A common approach to the color image compression was started by transform
the red, green, and blue or (RGB) color model to a desire color model, then applying
compression techniques, and finally retransform the results into RGB model In this
paper, a new color image compression method based on multilevel block truncation
coding (MBTC) and vector quantization is presented. By exploiting human visual
system response for color, bit allocation process is implemented to distribute the bits
for encoding in more effective away.
To improve the performance efficiency of vector quantization (VQ),
modifications have been implemented. To combines the simple computational and
edge preservation properties of MBTC with high compression ratio and good
subjective performance of modified VQ, a hybrid MBTC- modified VQ color image
compression method is presented. The analysis results have indicated the
performance of the suggested method is better, where the constructed images are less
distorted and compressed with higher factor(59:1).
Summary Search Alachtgalat process semantic encoding carried out by the actor inside the theater to deliver the intellectual sense, and social, as well as the aesthetic to the recipient, the fact that the code is the function is operated relationship in accordance with the prior intent to deliver the implications of a particular intent, too, and the fact that encryption is the best way to transfer messages in system theater, where should the actor that has the ability to create images (sensory) or intellectual new in human consciousness on the basis of conversion of impressions collected from reality and re technically formed inside the theater, allowing the recipient to arrange these marks to obtain the meaning that lies in them. So he
... Show MoreThis paper presents a study of a syndrome coding scheme for different binary linear error correcting codes that refer to the code families such as BCH, BKLC, Golay, and Hamming. The study is implemented on Wyner’s wiretap channel model when the main channel is error-free and the eavesdropper channel is a binary symmetric channel with crossover error probability (0 < Pe ≤ 0.5) to show the security performance of error correcting codes while used in the single-staged syndrome coding scheme in terms of equivocation rate. Generally, these codes are not designed for secure information transmission, and they have low equivocation rates when they are used in the syndrome coding scheme. Therefore, to improve the transmiss
... Show MoreIn this paper, the continuous classical boundary optimal control problem (CCBOCP) for triple linear partial differential equations of parabolic type (TLPDEPAR) with initial and boundary conditions (ICs & BCs) is studied. The Galerkin method (GM) is used to prove the existence and uniqueness theorem of the state vector solution (SVS) for given continuous classical boundary control vector (CCBCV). The proof of the existence theorem of a continuous classical boundary optimal control vector (CCBOCV) associated with the TLPDEPAR is proved. The derivation of the Fréchet derivative (FrD) for the cost function (CoF) is obtained. At the end, the theorem of the necessary conditions for optimality (NCsThOP) of this problem is stated and prov
... Show MoreThe enhancement of heat exchanger performance was investigated using dimpled tubes tested at different Reynolds numbers, in the present work four types of dimpled tubes with a specified configuration manufactured, tested and then compared performance with the smooth tube and other passive techniques performance. Two dimpled arrangements along the tube were investigated, these are inline and staggered at constant pitch ratio X/d=4, the test results showed that Nusselts number (heat transfer) of the staggered array is higher than the inline array by 13%. The effect of different depths of the dimple (14.5 mm and 18.5 mm) has been also investigated; a tube with large dimple diameter enhanced the Nusselts number by about 25% for the ran
... Show MoreThe speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T
Stimulative effect of 10 mW He-Ne laser on the phagocytic activity of human polymorphonuclear leukocytes( PMNs) has been studied in vitro. Normal polymorphonuclear leucocytes were isolated from the human peripheral blood. A mixture of 0.25 ml of Hanks solution, 0.25 ml of serum, 0.25 ml of Candida albicans suspension and 0.25 ml of PMNs suspension was prepared. The samples of mixture of PMNs and Candida were subdivided in 1 ml ependrof tubes and irradiated to He-Ne laser for 1, 3, 5, 10 and 20 min. The diameter of the irradiated area was 0.8 cm. For calculation of Phagocytic index before and after irradiation, the samples were incubated (37°C) at 5, 15, 30, 60 min. The slides of samples were prepared and stained using Giemsa stain. The
... Show MoreRemoval of heavy metals from waste water has received a great deal of attention. The compare Cr
(VI) adsorption characteristics removing from wastewater by using thermally modified and non-modified
eggshells were examined
Rationing is a commonly used solution for shortages of resources and goods that are vital for the citizens of a country. This paper identifies some common approaches and policies used in rationing as well asrisks that associated to suggesta system for rationing fuelwhichcan work efficiently. Subsequently, addressing all possible security risks and their solutions. The system should theoretically be applicable in emergency situations, requiring less than three months to implement at a low cost and minimal changes to infrastructure.
After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show More