Preferred Language
Articles
/
jcoeduw-533
Astronomi cal Color Image Compression Using Multilevel Block Truncation Coding –Modified Vector Quantization Technique

A common approach to the color image compression was started by transform
the red, green, and blue or (RGB) color model to a desire color model, then applying
compression techniques, and finally retransform the results into RGB model In this
paper, a new color image compression method based on multilevel block truncation
coding (MBTC) and vector quantization is presented. By exploiting human visual
system response for color, bit allocation process is implemented to distribute the bits
for encoding in more effective away.
To improve the performance efficiency of vector quantization (VQ),
modifications have been implemented. To combines the simple computational and
edge preservation properties of MBTC with high compression ratio and good
subjective performance of modified VQ, a hybrid MBTC- modified VQ color image
compression method is presented. The analysis results have indicated the
performance of the suggested method is better, where the constructed images are less
distorted and compressed with higher factor(59:1).

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2017
Journal Name
International Journal Of Engineering Research And Advanced Technology
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
Fourier Transform Coding-based Techniques for Lossless Iris Image Compression

     Today, the use of iris recognition is expanding globally as the most accurate and reliable biometric feature in terms of uniqueness and robustness. The motivation for the reduction or compression of the large databases of iris images becomes an urgent requirement. In general, image compression is the process to remove the insignificant or redundant information from the image details, that implicitly makes efficient use of redundancy embedded within the image itself. In addition, it may exploit human vision or perception limitations to reduce the imperceptible information.
     This paper deals with reducing the size of image, namely reducing the number of bits required in representing the

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Combined DWT and DCT Image Compression Using Sliding RLE Technique

A number of compression schemes were put forward to achieve high compression factors with high image quality at a low computational time. In this paper, a combined transform coding scheme is proposed which is based on discrete wavelet (DWT) and discrete cosine (DCT) transforms with an added new enhancement method, which is the sliding run length encoding (SRLE) technique, to further improve compression. The advantages of the wavelet and the discrete cosine transforms were utilized to encode the image. This first step involves transforming the color components of the image from RGB to YUV planes to acquire the advantage of the existing spectral correlation and consequently gaining more compression. DWT is then applied to the Y, U and V col

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Improved Image Compression Technique Using EZW and SPHIT Algorithms

 Uncompressed form of the digital images are needed a very large storage capacity amount, as a consequence requires large communication bandwidth for data transmission over the network. Image compression techniques not only minimize the image storage space but also preserve the quality of image. This paper reveal image compression technique which uses distinct image coding scheme based on wavelet transform that combined effective types of compression algorithms for further compression. EZW and SPIHT algorithms are types of significant compression techniques that obtainable for lossy image compression algorithms. The EZW coding is a worthwhile and simple efficient algorithm. SPIHT is an most powerful technique that utilize for image

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
EFFICIENCY SPIHT IN COMPRESSION AND QUALITY OF IMAGE

Image compression is an important tool to reduce the bandwidth and storage
requirements of practical image systems. To reduce the increasing demand of storage
space and transmission time compression techniques are the need of the day. Discrete
time wavelet transforms based image codec using Set Partitioning In Hierarchical
Trees (SPIHT) is implemented in this paper. Mean Square Error (MSE), Peak Signal
to Noise Ratio (PSNR) and Maximum Difference (MD) are used to measure the
picture quality of reconstructed image. MSE and PSNR are the most common picture
quality measures. Different kinds of test images are assessed in this work with
different compression ratios. The results show the high efficiency of SPIHT algori

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Int. J. Nonlinear Anal. Appl
Publication Date
Wed May 10 2017
Journal Name
Australian Journal Of Basic And Applied Sciences
Preview PDF
Publication Date
Sun Jul 01 2018
Journal Name
International Journal Of Engineering Research And Management
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Image Compression based on Adaptive Polynomial Coding of Hard & Soft Thresholding

In this paper, an adaptive polynomial compression technique is introduced of hard and soft thresholding of transformed residual image that efficiently exploited both the spatial and frequency domains, where the technique starts by applying the polynomial coding in the spatial domain and then followed by the frequency domain of discrete wavelet transform (DWT) that utilized to decompose the residual image of hard and soft thresholding base. The results showed the improvement of adaptive techniques compared to the traditional polynomial coding technique.

View Publication Preview PDF