New trends in teaching and learning theory are considered a theoretical axis
from which came the background that depends on any source, or practice sample or
teaching plane, accuracy and simplicity prevent the development of the teaching
process. Many attempts have come to scene to illuminate the teaching background,
but they have not exceed those remarkable patterns and methods. Thus, the
appearance of the teaching theory have been hindered.
This led to the need for research and development in the field of teaching to
find out a specific teaching theory according to the modern trends and concepts.
Teaching is regarded a humanitarian process which aims at helping those who
want to acquire knowledge, since teaching is an intended activity. Education is the
process of acquiring knowledge, skills and trends by the person who wants to learn
himself / herself. Accordingly, learning is a principal branch of teaching, because it is
considered one of the varied methods in carrying out the teaching process. From this
fact did the need to use a good theory as a guide to the later researches come. Its value
depends highly on the studies and researches it produces to help the researcher find a
way that direct him to discover new aspects.
* The Research purpose:
This research aims at knowing the new trends and methods in the theory of
teaching and learning.
* The Research Boundary:
This research is limited to: finding out the theory of teaching and learning and
putting a balance between them. In addition to discovering the features and methods
of building the teaching theory. Moreover, it aims at putting a limit to the role played
by the theory in the teaching and learning process.
Specifying terminology:
Terms concerning teaching and learning are specified in the research itself.
Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MorePatients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreObjective: preparing educational units for the magnet poles strategy in learning the spiking skill in volleyball, and identifying the effect of the magnet poles strategy in learning the spiking skill in volleyball for female students.Research methodology: The experimental design with two equal experimental and control groups with tight control was also adopted in the pre- and post-tests. The boundaries of this research community are represented by fourth-grade middle school students at Basra Girls' Middle School (2024-2025), whose total number is (90) students, distributed by nature into 4 sections. Sections (A-B) were determined by lottery, so that Section (A) represents the experimental group and Section (B) represents the control
... Show MorePermeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show MoreThe research presented the experience of creating a new sustainable city, and this experience of establishing an Eco-City (Environmentally friendly) is considered the first experience in Iraq. The current study stressed the importance of the need for environmental planning in the early stages of planning new cities based on realism in planning, design and implementation. Subsequently, that aims to preserve the ecosystem, which is difficult to compensate if degraded or polluted. The research incorporated environmental planning indicators within sustainable urban planning (Reliance on generating electric power that is based on clean and renewable energy sources, Availability of public t