Abstract
An optoelectronic system for fog detection and visibility technique is presented .The idea of this research is based on the measurement of the atmospheric visibility by using an infrared beam emitter from LED diode. The optical scattering is used as a method to calculate the visibility. This method is applied at forward scattering within a foggy atmosphere, which is modern and has great importance for measuring visibility in seaports, airports, public roads and highways. In this paper we focus on the description of the system, principles of its operation and some results of field tests.
Keywords: fog sensor, visibility sensor, backscattering, forward scattering.
In this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.
The nanocomposite on the base of synthesis Copper iodide
nanoparticles and polyvinyl alcohol (PVA/CuI) with different
concentration of CuI were obtained using casting technique.
PVA/CuI polymer composite samples have been prepared and
subjected to characterizations using FTIR spectroscopy, The FTIR
spectral analysis shows remarkable variation of the absorption peak
positions with increasing CuI concentration. The obtained results by
X-ray diffraction indicated the formation of cubic CuI particles. The
effects of CuI concentrations on the optical properties of the PVA
films were studied in the region of wavelength, (190-1100) nm.
From the derivation of Tauc's relation it was found that the direct
allowed t
Thin a-:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As), and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on value
... Show MoreIn this work, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). Because of a trade off between the etalon finesse values and driving terms, an optimization procedures have been done on the InSb etalon/CO laser parameters, using critical switching irradiance (Ic) via simulation systems of optimization procedures of optical cavity. in order to achieve the minimum switching power and faster switching time, the optimization parameters of the finesse values and driving terms on optical bistability and switching dynamics must be studied.
... Show MoreChalcopyrite thin films ternary Silver Indium Diselenide AgInSe2 (AIS) pure and Aluminum Al doped with ratio 0.03 was prepared using thermal evaporation with a vacuum of 7*10-6 torr on glass with (400) nm thickness for study the structural and optical properties. X-ray diffraction was used to show the inflance of Al ratio dopant on structural properties. X-ray diffraction show that thin films AIS pure, Al doped at RT and annealing at 573 K are polycrystalline with tetragonal structure with preferential orientation (112). raise the crystallinity degree. AFM used to study the effect of Al on surfaces roughness and Grain Size Optical properties such as the optical band gap, absorption coefficient, Extinction coefficient, refractive ind
... Show MoreOptical fiber chemical sensor based surface Plasmon resonance for sensing and measuring the refractive index and concentration for Acetic acid is designed and implemented during this work. Optical grade plastic optical fibers with a diameter of 1000μm were used with a diameter core of 980μm and a cladding of 20μm, where the sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal and the Acetic acid is placed on the sensing probe.
Polyaniline membranes of aniline were produced using an electrochemical method in a cell consisting of two poles. The effect of the vaccination was observed on the color of membranes of polyaniline, where analysis as of blue to olive green paints. The sanction of PANI was done by FT-IR and Raman techniques. The crystallinity of the models was studied by X-ray diffraction technique. The different electronic transitions of the PANI were determined by UV-VIS spectroscopy. The electrical conductivity of the manufactured samples was measured by using the four-probe technique at room temperature. Morphological studies have been determined by Atomic force microscopy (AFM). The structural studies have been measured by (SEM).
There is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.