Abstract
A two electrode immersion electrostatic lens used in the design
of an electron gun, with small aberration, has been designed using
the finite element method (FEM). By choosing the appropriate
geometrical shape of there electrodes the potential V(r,z) and the
axial potential distribution have been computed using the FEM to
solve Laplace's equation.
The trajectory of the electron beam and the optical properties of
this lens combination of electrodes have been computed under
different magnification conditions (Zero and infinite magnification
conditions) from studying the properties of the designed electron
gun can be supplied with Abeam current of 5.7*10-6 A , electron
gun with half acceptance angle of (5mrad)
The optical modulator was designed by using iterated function
systems (IFSs) by IFS Construction Kit program. The modulator was inserted into the optical system using ZEMAX optical design program. In this program, it is assumed that the modulator is made from one of آ the infrared transmitting materials. Eight materials at room temperature were used in this study; these are IRTRAN materials, Si, and Ge for the range of 3-9 l-lm.
Systems were evaluated and analyzed by using different criteria,
including spot diagram, modulation transfer function, and point spread function. The effect of optical modulator change with the chang of آ its material results in focusing of functions and frequencies as requ
... Show MoreIn this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F
... Show MoreAbstract
Experimental work from Magnetic Abrasive Finishing (MAF) tests was carried out design parameters (amplitude, and number of cycle which are formed the shape of electromagnetic pole), and technological parameters (current, cutting speed, working gap, and finishing time) all have an influence on the mechanical properties of the surface layer in MAF process. This research has made to study the effect of design and technological parameters on the surface roughness (Ra), micro hardness (Hv) and material removal (MR) in working zone. A set of experimental tests has been planned using response surface methodology according to Taguchi matrix (36) with three levels and six factors
... Show MoreThe aim of this research is to design and construct a semiconductor laser range finder
operating in the near infrared range for ranging and designation. The main part of the range finder is the
transmitter which is a semiconductor laser type GaAs of 0.904 mm wavelength with a beam expander,
and the receiver with its collecting optics. The characteristics of transmitter pulse width were 200ns and
threshold current 10 Amp. and maximum operating current 38 Amp. The repetition rate was set at 660 Hz
and maximum output power about 1 watt. The divergence of the beam was 0.268o. A special computer
code was used for optimum optical design and laser spot size analysis and for calculation of atmosphere
attenuation.
The main objective of this study is to introduce a systematic design procedure for short-span segmental beams following a sophisticated ACI 440.2R-17 design procedure. The general aspects of innovative short-span segmental beams are easy to fabricate, economical and rapidly placed in pre-specified positions. Short-span segmental beams fabricated from individual precast plain-concrete blocks and CFRP plates. Recently, experimental tests performed on short-span segmental beams, by the authors, investigated CFRP plate-bonding, CFRP plate cross-sectional area, the thickness of plate-bonding epoxy resin, surface-to-surface condition of concrete blocks, as well as, interface condition of the bonding surface. The experimental program comprises tes
... Show MoreIn Iraq, water shortages and drought, especially during the hot summer months, necessitates that municipal authorities adopt water reuse projects like reusing treated domestic wastewater for crop irrigation. This work gives the conceptual and basic design elements for the necessary steps of filtration, UV irradiation and chlorination to make such a wastewater fit for agricultural use. A typical rural community of 50,000 people is considered as an example case for which functionality and relative simplicity of the proposed designs are prime factors. The objectives are 1) to show what is required and 2) that the presented information may be utilized to embark on the following phases of detailed design and execution of such projects.
The Mesopotamian soil is muddy and fertile, and so from ancient eras Iraqis used mud in their building, settlements and architecture in different methodologies according to the nature and the function of the building that was either in its pure form or by mixing it with other materials such as straw . also as raw bricks in different ways either for the whale building or parts of it, or for the finishing parts such as roofing for instance. In this research these different forms and methodologies will permeate through out a chosen examples of historical building, rural buildings and settlements and ancient buildings as well as some current uses of mud in the structures and building in standing cities, this in order to conclude some
... Show MoreMagneto-rheological (MR) valve is one of the devices generally used to control the speed of Hydraulic actuator of MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. A mathematical model for the MR valve is developed and the simulation is carried out to evaluate the newly developed MR valve. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMMR). The model dimensions of MR valve, material properties are taken into account. The results of analysis are presented in terms of magnetic strength H and magnetic flux density B. The simulation results based on the proposed model indicate that the ef
... Show More