Abstract
A two electrode immersion electrostatic lens used in the design
of an electron gun, with small aberration, has been designed using
the finite element method (FEM). By choosing the appropriate
geometrical shape of there electrodes the potential V(r,z) and the
axial potential distribution have been computed using the FEM to
solve Laplace's equation.
The trajectory of the electron beam and the optical properties of
this lens combination of electrodes have been computed under
different magnification conditions (Zero and infinite magnification
conditions) from studying the properties of the designed electron
gun can be supplied with Abeam current of 5.7*10-6 A , electron
gun with half acceptance angle of (5mrad)
Background: During acrylic resin processing, the mold must be separated from the surface of the gypsum to prevent liquid resin from penetrating into the gypsum, and water from the gypsum seeping into the acrylic resin. For many years, tin foil was the most acceptable separating medium, and because it's difficult to apply, a tin-foil substitute is used. In this study, olive oil is used as an alternative to tin foil separating medium for first time, and evaluating its effect as a separating medium on some mechanical properties such as (indentation hardness and transverse strength) of acrylic resins denture base comparing it with those processed using tin-foil and tin foil substitute such as (cold mold seal) separating medium. Materials and M
... Show MoreThe present research had dealt with preparing bars with the length of about (13 cm) and adiametar of (1.5 cm) of composite materials with metal matrix represented by (Al-Cu-Mg) alloy cast enforced by (ZrO2) particles with chosen weight percentages (1.5, 2.5 ,3.5, 5.5 %). The base cast and the composite materials were prepared by casting method by uses vortex Technique inorder to fix up (ZrO2) particles in homogeneous way on the base cast. In addition to that, two main groups of composite materials were prepared depending on the particles size of (ZrO2) , respectively. &n
... Show MoreIn the present work, the nuclear shell model with Hartree–Fock (HF) calculations have been used to investigate the nuclear structure of 24Mg nucleus. Particularly, elastic and inelastic electron scattering form factors and transition probabilities have been calculated for low-lying positive and negative states. The sd and sdpf shell model spaces have been used to calculate the one-body density matrix elements (OBDM) for positive and negative parity states respectively. Skyrme-Hartree-Fock (SHF) with different parameterizations has been tested with shell model calculation as a single particle potential for reproducing the experimental data along with a harmonic oscillator (HO) and Woods-Saxo
... Show MoreThe nuclear matter density distributions, elastic electron scattering charge formfactors and root-mean square (rms) proton, charge, neutron and matter radii arestudied for neutron-rich 6,8He and 19C nuclei and proton-rich 8B and 17Ne nuclei. Thelocal scale transformation (LST) are used to improve the performance radial wavefunction of harmonic-oscillator wave function in order to generate the long tailbehavior appeared in matter density distribution at high . A good agreement resultsare obtained for aforementioned quantities in the used model.
The ionospheric characteristics exhibit significant variations with the solar cycle, geomagnetic conditions, seasons, latitudes and even local time. Representation of this research focused on global distribution of electron (Te) and ion temperatures (Ti) during great and severe geomagnetic storms (GMS), their daily and seasonally variation for years (2001-2013), variations of electron and ion temperature during GMS with plasma velocity and geographic latitudes. Finally comparison between observed and predicted Te and Ti get from IRI model during the two kinds of storm selected. Data from satellite Defense Meteorological Satellite Program (DMSP) 850 km altitude are taken for Te, Ti and plasma velocity for different latitudes during great
... Show MoreThe calculation. of the nuclear. charge. density. distributions. ρ(r) and root. mean. square. radius.( RMS ) by elastic. electron. scattering. of medium. mass. nuclei. such. as (90Zr, 92Mo) based. on the model. of the modified. shell. and the use of the probability. of occupation. on the surface. orbits. of level 2p, 2s eroding. shells. and 1g gaining. shells. The occupation probabilities of these states differ noticeably from the predictions of the SSM. We have found. an improvement. in the determination. of ground. charge. density. and this improvement. allow. more precise. identification. of (CDD) between. (92Mo- 90Zr) to illustrate the influence of the extra
... Show MoreSemiconductor quantum dots (QDs) have attracted tremendous attentions for their unique characteristics for solid-state lighting and thin-film display applications. A simple chemical method was used to synthesis quantum dots (QDs) of zinc sulfide (ZnS) with low cost. The XRD) shows cubic phase of the prepared ZnS with an average particles size of (3-29) nm. In UV-Vis. spectra observed a large blue shift over 38 nm. The band gaps energy (Eg) was 3.8 eV and 3.37eV from the absorption and photoluminescence (PL) respectively which larger than the Eg for bulk. QDs-LED hybrid devices were fabricated using ITO/ PEDOT: PSS/ Poly-TPD/ ZnS-QDs/ with different electron transport layers and cathode of LiF/Al layers. The EL spectrum reveals a bro
... Show More