This paper addresses the new coloring in the concept of dystopian society as represented by the positive role of one of the characters vs. the passive role of the government and its mutual effect on the people of the society. In addition, it describes how all men in the dystopian society victimize and degrade the other through unlawful acts, like: stealing, rape, and fear, which are the lowest points in a moral decay. However, it offers hope by illustrating a positive sense, as exemplified by the doctor's wife out of Saramago's optimistic view that men may be descended from good women. Accordingly, the paper aims to examine the effect of the government’s role in the lives of the people who have later turned into blind in a dystopian society and of people towards one other, and to clarify the positive sense as represented by the doctor’s wife. To meet this, the researcher is to adopt Tom Moylan’s (2000) concept of Dystopia when analyzing José Saramago’s novel, Blindness. This study has uncovered the erosion of trust in others and clarified the heinous injustices committed by both authority figures and laypeople. The troops' cruel treatment toward the blind has led to their sudden infection with that disease. Saramago expressed his upbeat belief that men can change just, they derived from good women as the doctor's wife. The study further has exposed the impact of the violent behavior of both the government and the people towards one another on the confusion and degradation of the humanity.
The present study aims to detect CTX-M-type ESBL from Escherichia coli clinical isolates and to analyze their antibotic susceptibility patterns. One hundred of E. coli isolates were collected from different clinical samples from a tertiary hospital. ESBL positivity was determined by the disk diffusion method. PCR used for amplification of CTX-M-type ESBL produced by E. coli. Out of 100 E. coli isolates, twenty-four isolates (24%) were ESBL-producers. E. coli isolated from pus was the most frequent clinical specimen that produced ESBL (41.66%) followed by urine (34.21%), respiratory (22.23%), and blood (19.05%). After PCR amplification of these 24 isolates, 10 (41.66%) isolates were found to possess CTX-M genes. The CTX-M type ESBL
... Show MoreThe temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated
... Show MoreThe disposal of textile effluents to the surface water bodies represents the critical issue especially these effluents can have negative impacts on such bodies due to the presence of dyes in their composition. Biological remediation methods like constructed wetlands are more cost-effective and environmental friendly technique in comparison with traditional methods. The ability of vertical subsurface flow constructed wetlands units for treating of simulated wastewater polluted with Congo red dye has been studied in this work. The units were packed with waterworks sludge bed that either be unplanted or planted with Phragmites australis and Typha domingensis. The efficacy of present units was evaluated by monitoring of DO, Temperature, COD
... Show MoreA variety of single-engine driven files and inematics have been introduced to improve the clinical performance of NiTi rotary files. The purpose of this in vitro study was to measure and compare the incidence of dentinal defects after root canal preparation with different single file systems.
The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show More