Steganography is a mean of hiding information within a more obvious form of
communication. It exploits the use of host data to hide a piece of information in such a way
that it is imperceptible to human observer. The major goals of effective Steganography are
High Embedding Capacity, Imperceptibility and Robustness. This paper introduces a scheme
for hiding secret images that could be as much as 25% of the host image data. The proposed
algorithm uses orthogonal discrete cosine transform for host image. A scaling factor (a) in
frequency domain controls the quality of the stego images. Experimented results of secret
image recovery after applying JPEG coding to the stego-images are included.
In this study, ultraviolet (UV), ozone techniques with hydrogen peroxide oxidant were used to treat the wastewater which is produced from South Baghdad Power Station using lab-scale system. From UV-H2O2 experiments, it was shown that the optimum exposure time was 80 min. At this time, the highest removal percentages of oil, COD, and TOC were 84.69 %, 56.33 % and 50 % respectively. Effect of pH on the contaminants removing was studied in the range of (2-12). The best oil, COD, and TOC removal percentages (69.38 %, 70 % and 52 %) using H2O2/UV were at pH=12. H2O2/ozone experiments exhibited better performance compared to
... Show MoreBased on the results of standard penetration tests (SPTs) conducted in Al-Basrah governorate, this research aims to present thematic maps and equations for estimating the bearing capacity of driven piles having several lengths. The work includes drilling 135 boreholes to a depth of 10 m below the existing ground level and three standard penetration tests (SPT) at depths of 1.5, 6, and 9.5 m were conducted in each borehole. MATLAB software and corrected SPT values were used to determine the bearing capacity of driven piles in Al-Basrah. Several-order interpolation polynomials are suggested to estimate the bearing capacity of driven piles, but the first-order polynomial is considered the most straightforward. Furthermore, the root means squar
... Show MoreWidespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-
... Show MoreIn this study, a preliminary economic feasibility study of the project of wind power at the site of Al-Shehabi (Wasit-Iraq) was conducted using measured wind data at altitudes of 10, 30, 50 and 52 m per 10 minutes. For the purpose of comparison, data from NASA were used at the same location at 50 m height. The lowest unit cost of electricity from wind energy was found to be 0.028 $/Kwh and 0.0399 $/Kwh by using the standard methodologies of Levelized Cost of Energy (LCOE) equation and Net Present Value (NPV) procedure, respectively. Furthermore, RETScreen software was used to perform the economic prefeasibility study of a proposed wind farm. The study concludes that this site is economically feasible if a wind fa
... Show MoreDeriving land cover information from satellite data is one of the most common applications employed to monitor, evaluate, and manage the environment. This study aims to detect the land cover/land use changes and calculate the areas of different land cover types in Baghdad, Iraq, for the period from 2015 to 2020, using Landsat 8 images. The supervised Maximum Likelihood Classification (MLC) method was applied to classify the images. Four land cover types were obtained, namely urban, vegetation, water, and barren soil. Changes in the four land cover classes during the study period were observed. The extent of the urban, vegetation, and water areas was increased by about 7.5%, 9.5%, and 1.5%, respectively, whereas t
... Show MoreRecently, Human Activity Recognition (HAR) has been a popular research field due to wide spread of sensor devices. Embedded sensors in smartwatch and smartphone enabled applications to use sensors in activity recognition with challenges for example, support of elderly’s daily life . In the aim of recognizing and analyzing human activity many approaches have been implemented in researches. Most articles published on human activity recognition used a multi -sensors based methods where a number of sensors were tied on different positions on a human body which are not suitable for many users. Currently, a smartphone and smart watch device combine different types of sensors which present a new area for analysi
... Show MoreEpilepsy is one of the most common diseases of the nervous system around the world, affecting all age groups and causing seizures leading to loss of control for a period of time. This study presents a seizure detection algorithm that uses Discrete Cosine Transformation (DCT) type II to transform the signal into frequency-domain and extracts energy features from 16 sub-bands. Also, an automatic channel selection method is proposed to select the best subset among 23 channels based on the maximum variance. Data are segmented into frames of one Second length without overlapping between successive frames. K-Nearest Neighbour (KNN) model is used to detect those frames either to ictal (seizure) or interictal (non-
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
Estimation of the tail index parameter of a one - parameter Pareto model has wide important by the researchers because it has awide application in the econometrics science and reliability theorem.
Here we introduce anew estimator of "generalized median" type and compare it with the methods of Moments and Maximum likelihood by using the criteria, mean square error.
The estimator of generalized median type performing best over all.