The present study aimed at examining the factors that affect the choice of A major among a sample of BA fe(male) students at the levels 3-8 in King Abdulaziz University (KAU), in Jeddah, Saudi Arabia. To meet this objective, a descriptive survey method was used together with a questionnaire that consisted of 4 axes to answer the central question: What are the factors affecting the choice of a major at the university? Results have shown that the item that measured the students’ ability to choose the major ranked (First); it was concerned with the effect on the students' choice of his/her major in the university. On the last position and with respect to this effect came the professional tendencies and desires. Results have also shown that there were other differences of a statistical significance in favor of a literary major on the four axes of the questionnaire. Besides, there were no differences between the two sexes regarding the choice of a university major. The study has recommended the need for boosting the role of students' awareness, and holding workshops and cultural courses after joining college, as well as introducing majors, their fields and the application of a professional tendency scale in the preparatory stage in the university.
Today’s academics have a major hurdle in solving combinatorial problems in the actual world. It is nevertheless possible to use optimization techniques to find, design, and solve a genuine optimal solution to a particular problem, despite the limitations of the applied approach. A surge in interest in population-based optimization methodologies has spawned a plethora of new and improved approaches to a wide range of engineering problems. Optimizing test suites is a combinatorial testing challenge that has been demonstrated to be an extremely difficult combinatorial optimization limitation of the research. The authors have proposed an almost infallible method for selecting combinatorial test cases. It uses a hybrid whale–gray wol
... Show More
Rutting has a significant impact on the pavements' performance. Rutting depth is often used as a parameter to assess the quality of pavements. The Asphalt Institute (AI) design method prescribes a maximum allowable rutting depth of 13mm, whereas the AASHTO design method stipulates a critical serviceability index of 2.5 which is equivalent to an average rutting depth of 15mm. In this research, static and repeated compression tests were performed to evaluate the permanent strain based on (1) the relationship between mix properties (asphalt content and type), and (2) testing temperature. The results indicated that the accumulated plastic strain was higher during the repeated load test than that during the static load tests. Notably, temperatur
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
this paper contains preparation of Active carbon surface (AC) from pro so millet grain husks and Loading and activating by Iron oxide and hydrogen peroxide sequentially to obtain surface (ACIPE). The changes of previous processes on Active carbon surface were diagnosed by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy ( SEM ). These surfaces (AC and ACIPE ) were using as adsorbent for removing of congo red dye from aqueous solutions under certain conditions through batch system. More than one kinetic model was applied to congo red dye adsorption process and it was found that the most kinetic model applied to it is a model ( pseudo second order model).
This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
Fuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi
... Show MoreIsolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to find the best bacteria to remove kerosene from soil. The active bacteria are isolated for kerosene degradation process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradation which is 88.5%. The optimum conditions of kerosene degradation by Klebsiella pneumonia sp. are pH5, 48hr incubation period, 35°C temperature and 10000ppm the best kerosene concentration. The results 10000ppm showed that the maximum kerosene degradation can reach 99.58% after 48 h of incubation. Higher Kerosene degradation which was 99.83% was obtained at pH5. Kerosene degradation was found to be maximum at 3
... Show More