Lying is considered a dangerous tendency among children if it has become a habit. It results in many social problems, such as child’s loss of confidence, lack of others’ respect to him, and his lack of respect to the desired values of the society, such as honesty and trust. Consequently, he will be led to a deviation when he becomes old; especially if the child’s socially unaccepted behavior has not been directed. The research, thus, aims to examine the causes of lying in the most important stage of children’s life; that is, between (4-6) years. Such an aim helps to know about the individual reasons of lying among males and females from teachers’ perspectives. To meet the objective of the study, a number of (128) children has been randomly selected from the children of the Kindergarten Department during the academic year 2019-2020, together with (28) she-teachers. In addition, a questionnaire has been designed for the purpose of discovering the reasons behind a child’s lying in the Kindergarten. The researchers have used many statistical means, such as: T-test for one sample and T-test for two independent samples, Pearson correlation coefficient, and Kay square to find the difference between home and kindergarten regarding reasons of lying. Results have shown that the fe(male) children in the kindergarten live in a social environment that lacks honesty; especially the case with male children. Moreover, female kindergarten children enjoy a wide imagination; which is characterized by being exaggerating, abundance,, creativity, and lack of adherence to concrete reality. The reasons to lie for kindergarten male children are higher than that of female’.
: Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA /cm2), in15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in e
... Show MoreStudies from our laboratory have shown that Δ9-Tetrahydrocannabinol (THC), an ingredient found in marijuana plant Cannabis sativa, can attenuate acute lung injury induced by Staphylococcus enterotoxin B (SEB). In the current study, we investigated the role of THC on the metabolism of SEB-activated lymphocytes. To this end, we determined metabolic potential of SEB-activated lymphocytes treated with vehicle or THC by performing the Cell Mito Stress Test. The oxygen consumption rate (OCR) in THC-treated cells was decreased when compared to vehicle-treated group whereas the extracellular acidification rate (ECAR) was similar in both the groups. Specifically, electron transport chain inhi
This study relates to synthesis of bentonite-supported iron/copper nanoparticles through the biosynthesis method using eucalyptus plant leaf extract, which were then named E-Fe/Cu@B-NPs. The synthesised E-Fe/Cu@B-NPs were examined by a set of experiments involving a heterogeneous Fenton-like process that removed direct blue 15 (DB15) dye from wastewater. The resultant E-Fe/Cu@B-NPs were characterised by scanning electron microscopy, Brunauer–Emmet–Teller analysis, zeta potential analysis, Fourier transform infrared spectroscopy and atomic force microscopy. The operating parameters in batch experiments were optimised using Box–Behnken design. These parameters were pH, hydrogen peroxide (H2O2
... Show MoreStatic loads exposing to mechanical components can cause cracks, which are lead to form stress concentration regions causing the failure of structure. Generally, from 80% to 90% of structure failure is due to initiation of the cracks. Therefore, it is necessary to repair the crack and reduce its effect on the structure where the effect of the crack is modelled as an additional flexibility to the structure. In the last few years, piezoelectric materials have been considered as one of the most favourable repairing techniques. The piezoelectric material converts the applied voltage on it to a bending moment to counter the bending moment caused by the external load on the beam at the crack location. In this study, the design of the piez
... Show MoreThe mechanism of the electronic flow rate at Al-TiO2 interfaces system has been studied using the postulate of electronic quantum theory. The different structural of two materials lead to suggestion the continuum energy level for Al metal and TiO2 semiconductor. The electronic flow rate at the Al-TiO2 complex has affected by transition energy, coupling strength and contact at the interface of two materials. The flow charge rate at Al-TiO2 is increased by increasing coupling strength and decreasing transition energy.