Sesame crop, one of the very important oily, industrial, and summer crops that is economically important, has been investigated. The plantation and production of this crop has been studied in Al-Qadisiyah governorate during 2003-218. This is because this governorate is well-known by sesame plantation. Such a study helps to know the geographical distribution of sesame agricultural season in 2017-2018, and explore the most important natural factors that affect its plantation. Different research approaches have been adopted based on that facts that need to be met. A field study approach has been used in studying sesame crop descriptively and conceptually, shedding light on its nutritional and economic importance. Moreover, a descriptive comparative approach has been adopted when studying the geographical factors to know about the factors that affect its plantation and production in the area in question. Results have shown that climatic conditions of the area is suitable for its plantation and production. However, the soils of Al-Qadisiyah are of various categories. The best category is the riverbank soil, then comes river basin soil, and the depression soil of poor drainage. The latter has been invested after reclaiming it through planting the rice crop. Another type of soil is the sand dune soil which is unsuitable for agricultural production. Another type is the gypsum desert soil, which is agriculturally poor. Results have further revealed that rivers are considered the main surface water resource in the irrigation process as represented by the Euphrates Riverand its branches within the governorate. This is due to the lack of rain and its fluctuation.
This study examines the removal of ciprofloxacin in an aqueous solution using green tea silver nanoparticles (Ag-NPs). The synthesized Ag-NPs have been classified by the different techniques of SEM, AFM, BET, FTIR, and Zeta potential. Spherical nanoparticles with average sizes of 32 nm and a surface area of 1.2387m2/g are found to be silver nanoparticles. The results showed that the ciprofloxacin removal efficiency depends on the initial pH (2.5-10), CIP (2-15 mg/L), temperature (20-50°C), time (0-180 min), and Ag-NPs dosage (0.1-1g/L). Batch experiments revealed that the removal rate with ratio (1:1) (w/w) were 52%, and 79.8% of the 10 mg/L of CIP at 60, and 180 minutes, respectively with optimal pH=4. Kinetic models for adsorpti
... Show MoreIn this study, the flexural performance of a new composite beam–slab system filled with concrete material was investigated, where this system was mainly prepared from lightweight cold-formed steel sections of a beam and a deck slab for carrying heavy floor loads as another concept of a conventional composite system with a lower cost impact. For this purpose, seven samples of a profile steel sheet–dry board deck slab (PSSDB/PDS) carried by a steel cold-formed C-purlins beam (CB) were prepared and named “composite CBPDS specimen”, which were tested under a static bending load. Specifically, the effects of the profile steel sheet (PSS) direction (parallel or perpendicular to the span of the specimen) using different C-purlins c
... Show MoreA new Schiff base complex was prepeard and characterized: Chloro –Oxo (bis(Ohydroxy benzaldehyde) O-phenylene di imination ) Vanadium (V) with general formula (VOLCL). Complex was studied by using Three different organics Organic The photo chemistry of this solvent with different polarity . These solvents were ( Acetone,pyridinest chloro form) . It was found that the chelate Vanadium (V) complex decomposed photochemically in these solvents during . In the tra oxidation –reduction reaction leading to free radical derived in the ligand of shiff base ℓ .Vanadium IV chelate complex . It was also found that the quantum yield of photo decomposition (фd) and Activity ratio did not de
... Show MoreThe present study is to investigate the possibility of using wastes in the form of scrap iron (ZVI) and/ or aluminum ZVAI for the detention and immobilization of the chromium ions in simulated wastewater. Different batch equilibrium parameters such as contact time (0-250) min, sorbent dose (2-8 g ZVI/100 mL and 0.2-1 g ZVAI/100 mL), initial pH (3-6), initial pollutant concentration of 50 mg/L, and speed of agitation (0-250) rpm were investigated. Maximum contaminant removal efficiency corresponding to (96 %) at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained.
The best isotherm model for the batch single Cr(III) uptake by ZVI
... Show MoreConcrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into
... Show MoreSpectrophotometric method was developed for the determination of copper(II) ion. Synthesized (2,2[O-Tolidine-4,4-bis azo]bis[4,5-diphenyl imidazole]) (MBBAI) was used as chromogenic reagent at pH=5. Various factors affecting complex formation, such as, pH effect, reagent concentration, time effect and temperature effect, have been considered and studied. Under optimum conditions concentration ranged from (5.00-80.00) µg/mL of copper(II) obeyed Beer`s Low. Maximum absorption of the complex was 409nm with molar absorpitivity 0.127x104 L mol-1 cm-1. Limit of detection(LOD) and Limit of quantification were 1.924 and 6.42 μg/mL, respectively.
... Show MoreAs a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show More