The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
Abstract:- Cyberspace is a new arena for conflict between international powers, especially since the cost of cyber-conflict is less than its traditional warfare counterparts regardless of the nature of the weapons used, whether traditional or non-traditional. Cyber conflict is necessarily based on strategies to deter, attack, and defend. The aim of the cybercrime conflict is to ensure the defensive sufficiency of the state, ensuring its national security and safeguarding its supreme interests. Despite Japan-China relations characterized by convergence and cooperation in post-Cold War economic spheres, Japan continues to retain the growing Chinese influence in East Asia. These variables prompted Japan to announce a hedging strategy due to un
... Show MoreThis research has presented a solution to the problem faced by alloys: the corrosion problem, by reducing corrosion and enhancing protection by using an inhibitor (Schiff base). The inhibitor (Schiff base) was synthesized by reacting of the substrates materials (4-dimethylaminobenzaldehyde and 4-aminoantipyrine). It was diagnosed by infrared technology IR, where the IR spectrum and through the visible beams proved that the Schiff base was well formed and with high purity. The corrosion behavior of carbon steel and stainless steel in a saline medium (artificial seawater 3.5%NaCl) before and after using the inhibitor at four temperatures: 20, 30, 40, and 50 C° was studied by using three electrodes potentiostat. The corrosion behavior was
... Show MoreThis paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MoreThis study synthesized zeolite 4A, and hierarchical composite structure consisting of zeolite 4A- carbon were successfully prepared. Hydrothermal method was used to grow a layer of zeolite 4A over porous carbon surfaces to enhance mass transfer and increase surface area of zeolite. The products then were used to remove radioactive cesium137Cs from liquid wastewater. Iraqi dates leaves midribs (DM) were used as locally available agricultural waste to prepare low- cost porous carbon, using carbonization method in tubular furnace at 900C for two hours. Hierarchical porous structures including zeolite are prepared by mechanically activating the carbon surface via Ultrasonicating nanoparticles suspension of ground zeolite type 4A.F
... Show MoreThis study aimed at identifying the extent to which the social worker used the techniques of group discussion in the professional practice with the groups of school activity in the schools of Tubas governorate in light of some variables (gender, years of experience, academic qualification). The analytical descriptive method was used due to its suitability for the objectives of the study. A questionnaire was designed to collect data that included (30) items, distributed in three areas .The validity and reliability of the tool were verified and then distributed to the study sample.
The results of the study showed that the highest averages were in the discussion stage domain, where the pre-discussion stage was m
... Show MoreProviding useful information in estimating the amount and timing and the degree of uncertainty concerning the future cash flows is one of the three main objectives of the financial reporting system, which is done through the main financial statements. The interest on standard-setting bodies in the forecasting of future cash flows, especially Financial Accounting Standards Board (FASB) explain under Accounting Standard (1) of the year 1978 "Objectives of Financial Reporting by Business Enterprises", paragraph (37) thereof that accounting profits better than cash flows when forecasting future cash flows, In contrast, IAS (7) as amended in 1992 aims to compel economic units to prepare statement of c
... Show MoreAmputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show More