The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
Aleppo bentonite was investigated to remove ciprofloxacin hydrochloride from aqueous solution. Batch adsorption experiments were conducted to study the several factors affecting the removal process, including contact time, pH of solution, bentonite dosage, ion strength, and temperature. The optimum contact time, pH of solution and bentonite dosage were determined to be 60 minutes, 6 and 0.15 g/50 ml, respectively. The bentonite efficiency in removing CIP decreased from 89.9% to 53.21% with increasing Ionic strength from 0 to 500mM, and it increased from 89% to 96.9% when the temperature increased from 298 to 318 K. Kinetic studies showed that the pseudo second-order model was the best in describing the adsorption sys
... Show MoreIn this paper, we have investigated some of the most recent energy efficient routing protocols for wireless body area networks. This technology has seen advancements in recent times where wireless sensors are injected in the human body to sense and measure body parameters like temperature, heartbeat and glucose level. These tiny wireless sensors gather body data information and send it over a wireless network to the base station. The data measurements are examined by the doctor or physician and the suitable cure is suggested. The whole communication is done through routing protocols in a network environment. Routing protocol consumes energy while helping non-stop communic
... Show MoreAn effort is made to study the effect of composite nanocoating using aluminum-9%wt silicon alloys reinforced with different percentage (0.5,1,2,4)wt.% of carbon nanotubes (CNTs) using plasma spraying. The effect of this composite on corrosion behavior for AA6061-T6 by extrapolation Tafel test in sea water 3.5wt% NaCl was invested. Many specimens where prepared from AA6061-T6 by the dimension (15x15x3)mm as this first set up and other steps include coating process, X-ray diffraction and SEM examination .The results show the CNTs increase the corrosion rate of the nanocomposite coatings with increasing the weight percentage of CNTs within the Al-Si matrix. Al-9wt%Si coating layer itself has less corrosion rate if compared with both n
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
The research dealt with the subject of measuring the competitive performance of the National Insurance Company and some of its branches (Basra, Ninwa, Kirkuk and Babil), Depending on the Revenue Growth Index at the activity level, and the Revealed Comparative Advantage Index RCAIAt the branch level,To measure the competitiveness of the company And some branches, As the problem of research in the lack of adoption by some companies in the insurance service sector on scientific indicators to measure their competitive performance, The aims of the research is to measure the competitiveness of the National Insurance Company, as well as the competitiveness of its branches according to the scientific method, One of the main Conclusions of the re
... Show MoreThe statistical distributions study aimed to obtain on best descriptions of variable sets phenomena, which each of them got one behavior of that distributions . The estimation operations study for that distributions considered of important things which could n't canceled in variable behavior study, as result this research came as trial for reaching to best method for information distribution estimation which is generalized linear failure rate distribution, throughout studying the theoretical sides by depending on statistical posteriori methods like greatest ability, minimum squares method and Mixing method (suggested method).
The research
... Show MoreThe aim of this research is controlling the amount of the robotic hand catching force using the artificial muscle wire as an actuator to achieve the desired response of the robotic hand in order to catch different things without destroying or dropping them; where the process is to be similar to that of human hand catching way. The proper selection of the amount of the catching force is achieved through out simulation using the fuzzy control technique. The mechanism of the arrangement of the muscle wires is proposed to achieve good force selections. The results indicate the feasibility of using this proposed technique which mimics human reasoning where as the weight of the caught peace increases, the force increases also with approximatel
... Show MoreMany objective optimizations (MaOO) algorithms that intends to solve problems with many objectives (MaOP) (i.e., the problem with more than three objectives) are widely used in various areas such as industrial manufacturing, transportation, sustainability, and even in the medical sector. Various approaches of MaOO algorithms are available and employed to handle different MaOP cases. In contrast, the performance of the MaOO algorithms assesses based on the balance between the convergence and diversity of the non-dominated solutions measured using different evaluation criteria of the quality performance indicators. Although many evaluation criteria are available, yet most of the evaluation and benchmarking of the MaOO with state-of-art a
... Show MoreThis study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show More