Preferred Language
Articles
/
jcoeduw-1361
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Ghrelin and Leptin and Their Relations with Insulin Resistance in Diabetes Mellitus Type 2 Patients
...Show More Authors

Ghrelin and leptin are hunger hormones related to type 2 diabetes mellitus (T2DM), and the pathogenesis of T2DM is the abnormality in insulin secretion and insulin resistance (IR). The aim of this study is to evaluate ghrelin and leptin concentrations in blood and to specify the relationship of these hormones as dependent variables with some biochemical and clinical measurements in T2DM patients. In this study, forty one T2DM and forty three non-diabetes mellitus (non-DM) subjects, aged between 40-60 years and with normal weight, were enrolled. Fasting serum ghrelin and leptin were estimated by enzyme-linked immunosorbent assay (ELISA). In our results ghrelin was significantly increased, and leptin was significantly decreased, in T2DM pa

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Political Sciences Journal
The Patterns of the Strategic Environment and its Role in Determining Strategies for Dealing with Conflict and Peace Situations
...Show More Authors

Abstract

The decision maker needs to understand the strategic environment to be addressed through different means and methods. It is obvious that there is a difference between the three strategic environments (conflict environment, peace environment, post- peace environment) in terms of inputs and strategies to deal with each one of them. There is an urgent need to understand each pattern separately, analyze its inputs, and identify the factors and variables that affect the continuity of this situation (conflict, peace, post-peace). It is not appropriate to identify treatment without diagnosis of the condition, so it is very important to understand the type of strategic environment to be dealt with it.

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Stages of integration scenarios with strategic management From the perspective of study the historical development of scenarios
...Show More Authors

Purpose: The present study seeks to examine various history stages in which undergone by the concept of scenarios, and development of this concept to integration with the strategic management practices:
Methodology: The current study relied on a literature review and approach in providing total picture of different stages undergone by this concept.
The main results: the scenarios did not reach maturity in their quest for integration with strategic management, and still need a great effort for the maturation of this thought in the framework of strategic management, and through it can contribute in creating important knowledge evolution.
Originality and value: providing a contemporary model linking the roots of this concept and cu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Oct 20 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Effect of Extreme Values on Streeter-Phleps Model Parameter Estimators With Application Abstract
...Show More Authors

Abstract

   The extremes effects in parameters readings which are BOD (Biological Oxygen Demands) and DO(Dissolved Oxygen) can caused error estimating of the model’s parameters which used to determine the ratio of de oxygenation and re oxygenation of the dissolved oxygen(DO),then that will caused launch big amounts of the sewage pollution  water to the rivers and it’s turn is effect in negative form on the ecosystem life and the different types of the water wealth.

   As result of what mention before this research came to employees Streeter-Phleps model parameters estimation which are (Kd,Kr) the de oxygenation and re oxygenation ratios on respect

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Optimizing Blockchain Consensus: Incorporating Trust Value in the Practical Byzantine Fault Tolerance Algorithm with Boneh-Lynn-Shacham Aggregate Signature
...Show More Authors

The consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Small Horizontal Wind Turbine Design and Aerodynamic Analysis Using Q-Blade Software
...Show More Authors

Wind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables suc

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Artificial neural network model for predicting the desulfurization efficiency of Al-Ahdab crude oil
...Show More Authors

View Publication Preview PDF
Scopus (10)
Crossref (10)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Scopus (14)
Crossref (5)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Intrusion detection method for internet of things based on the spiking neural network and decision tree method
...Show More Authors

The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices

... Show More
Preview PDF