Preferred Language
Articles
/
jcoeduw-1361
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Estimating Stock Returns Using Rough Set Theory: An Exploratory study With An Evidence From Iraq Stock Exchange
...Show More Authors

‎ This research aims to estimate stock returns, according to the ‎Rough Set Theory ‎approach, ‎test ‎its effectiveness and accuracy in predicting stock returns and their potential in the ‎field of ‎financial ‎markets, and rationalize investor decisions. The research sample is totaling (10) ‎companies traded at Iraq Stock Exchange. The results showed a remarkable ‎ ‎Rough Set Theory application in data reduction, contributing to the rationalization of ‎investment ‎decisions. The most prominent conclusions are the capability of rough set theory ‎in ‎dealing with financial data and applying it for forecasting stock ‎returns.‎The ‎research provides those interested in investing stocks in financial

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 06 2011
Journal Name
Journal Of Planner And Development
The Development of the planning and architectural thought of the holy city of Kadhimia in line with the spirit of the time
...Show More Authors

The evolution of thought, planning for Urban Communities in the second half of the twentieth century, through several successive stages. He was thought of planning urban communities depends on identifying the general plan for land uses of the project area as a basis for drawing charts the physical, social, economic, and put the general plan for land uses based on the terms of reference set by the number of experts in the ministries and agencies. I have lived cities in the Arab-Muslim region, during the transition period the natural and historic environment, urban, sophisticated balanced ways mentioned in the cultural, social, inspired by the teachings of Islam and the customs and traditions of the Arab social, put forth a set of

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN) Technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 31 2024
Journal Name
Iraqi Geological Journal
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
A Study on Transportation Models in Their Minimum and Maximum Values with Applications of Real Data
...Show More Authors

The purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Inverse Kinematics Solution for Redundant Robot Manipulator using Combination of GA and NN
...Show More Authors

A demonstration of the inverse kinematics is a very complex problem for redundant robot manipulator. This paper presents the solution of inverse kinematics for one of redundant robots manipulator (three link robot) by combing of two intelligent algorithms GA (Genetic Algorithm) and NN (Neural Network). The inputs are position and orientation of three link robot. These inputs are entering to Back Propagation Neural Network (BPNN). The weights of BPNN are optimized using continuous GA. The (Mean Square Error) MSE is also computed between the estimated and desired outputs of joint angles. In this paper, the fitness function in GA is proposed. The sinwave and circular for three link robot end effecter and desired trajectories are simulated b

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Estimation Methods Of GM(1,1) Model With Missing Data and Practical Application
...Show More Authors

This paper presents a grey model GM(1,1) of the first rank and a variable one and is the basis of the grey system theory , This research dealt  properties of grey model and a set of methods to estimate parameters of the grey model GM(1,1)  is the least square Method (LS) , weighted least square method (WLS), total least square method (TLS) and gradient descent method  (DS). These methods were compared based on two types of standards: Mean square error (MSE), mean absolute percentage error (MAPE), and after comparison using simulation the best method was applied to real data represented by the rate of consumption of the two types of oils a Heavy fuel (HFO) and diesel fuel (D.O) and has been applied several tests to

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 07 2019
Journal Name
Arab Science Heritage Journal
تعيين عنصر الزئبق السام بتراكيز نزرة في نماذج غذائية ومائية مختلفة باستخدام منظومة بخار الزئبق البارد المرتبطة مع جهاز الامتصاص الذري اللهبي
...Show More Authors

الخلاصة

     يتضمن البحث تعيين عنصر الزئبق السام بتراكيزنزرة عالية الدقة (نانوغرام) باستخدام منظومة يخار الزئبق البارد لنماذج غذائية (لحوم حمراء ، لحوم بيضاء ) مختلفة ونماذج مائية (ماء النهر، مياه صناعية ، ماء الشرب) وربط المنظومة بتقنية الامتصاص الذري اللهبي.

     ان عنصر الزئبق من اشد العناصر سمية وان التراكيز المسموح بها عالميا لايتعدى جزء واحد

View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Semi parametric Estimators for Quantile Model via LASSO and SCAD with Missing Data
...Show More Authors

In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method

View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compared Some Estimators Ordinary Ridge Regression And Bayesian Ridge Regression With Practical Application
...Show More Authors

Maulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the  method To address a problem  and  method To address a problem , In this research a comparisons are employed between the biased   method and unbiased   method with Bayesian   using Gamma distribution  method  addition to Ordinary Least Square metho

... Show More
View Publication Preview PDF
Crossref