The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
Recently, Image enhancement techniques can be represented as one of the most significant topics in the field of digital image processing. The basic problem in the enhancement method is how to remove noise or improve digital image details. In the current research a method for digital image de-noising and its detail sharpening/highlighted was proposed. The proposed approach uses fuzzy logic technique to process each pixel inside entire image, and then take the decision if it is noisy or need more processing for highlighting. This issue is performed by examining the degree of association with neighboring elements based on fuzzy algorithm. The proposed de-noising approach was evaluated by some standard images after corrupting them with impulse
... Show MoreIn this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.
... Show MoreIn this work, we are obviously interested in a general solution for the calculation of the image of a single bar in partially coherent illumination. The solution is based on the theory of Hopkins for the formation of images in optical instruments in which it was shown that for all practical cases, the illumination of the object may be considered as due to a self – luminous source placed at the exit pupil of the condenser , and the diffraction integral describing the intensity distribution in the image of a single bar – as an object with half – width (U0 = 8 ) and circular aperture geometry is viewed , which by suitable choice of the coherence parameters (S=0.25,1.0.4.0) can be fitted to the observed distribution in various types of mi
... Show MoreThis research presents a new study in reactive distillation by adopting a consecutive reaction . The adopted consecutive reaction was the saponification reaction of diethyl adipate with NaOH solution. The saponification reaction occurs in two steps. The distillation process had the role of withdrawing the intermediate product i.e. monoethyl adipate from the reacting mixture before the second conversion to disodium adipate occurred. It was found that monoethyl adipate appeared successfully in the distillate liquid. The percentage conversion from di-ester to monoester was greatly enhanced (reaching 86%) relative to only 15.3% for the case of reaction without distillation .This means 5 times enhancement . The presence of two layers in both
... Show MoreThe use of essential services in modern constructions, such pipes, and ducts, became important, placing these pipes and ducts underneath the soffit of the beam. They made a ceiling sandwich, and that causes to reduce the height of the floor, so the presence of the opening in the beam saves the height of the floor. In this paper, the investigation of the beam response of reinforced concrete simply supported rectangle beams with square web openings is presented, including a number of the web openings (two, four, and eight), in addition to its use in strengthening the member at the openings (when the beam is planned before casting, internal deformation steel bar is used, and in case of the opening is existing in the b
... Show MoreThis research presents a new study in reactive distillation by adopting a consecutive reaction . The adopted consecutive reaction was the saponification reaction of diethyl adipate with NaOH solution. The saponification reaction occurs in two steps. The distillation process had the role of withdrawing the intermediate product i.e. monoethyl adipate from the reacting mixture before the second conversion to disodium adipate occurred. It was found that monoethyl adipate appeared successfully in the distillate liquid. The percentage conversion from di-ester to monoester was greatly enhanced (reaching 86%) relative to only 15.3% for the case of reaction without distillation .This means 5 times enhancement . The presence of two layers in both the
... Show MoreThis paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show More