The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
The estimation of the parameters of Two Parameters Gamma Distribution in case of missing data has been made by using two important methods: the Maximum Likelihood Method and the Shrinkage Method. The former one consists of three methods to solve the MLE non-linear equation by which the estimators of the maximum likelihood can be obtained: Newton-Raphson, Thom and Sinha methods. Thom and Sinha methods are developed by the researcher to be suitable in case of missing data. Furthermore, the Bowman, Shenton and Lam Method, which depends on the Three Parameters Gamma Distribution to get the maximum likelihood estimators, has been developed. A comparison has been made between the methods in the experimental aspect to find the best meth
... Show MoreThis paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MoreCorona Virus Disease-2019 (COVID-19) is a novel virus belongs to the corona virus's family. It spreads very quickly and causes many deaths around the world. The early diagnosis of the disease can help in providing the proper therapy and saving the humans' life. However, it founded that the diagnosis of chest radiography can give an indicator of coronavirus. Thus, a Corner-based Weber Local Descriptor (CWLD) for COVID-19 diagnostics based on chest X-Ray image analysis is presented in this article. The histogram of Weber differential excitation and gradient orientation of the local regions surrounding points of interest are proposed to represent the patterns of the chest X-Ray image. Support Vector Machine (SVM) and Deep Belief Network (DBN)
... Show MoreMany consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreLiquid-side mass-transfer coefficients (KLa) were measured in air-suction type fermentors using physical absorption of oxygen. A fermentor of 0. 5 m i.d. was used with a working capacity of 60 liters of liquid. Tap water was used as the liquid phase, and air was used as the gas phase. The bioreactor mixing system consists of shrouded-disk/curved-blade turbine with six evacuated bending blades. The effect of liquid submergence (S) was investigated. Further, the effects of the ratio of the impeller diameter (D) to the tank diameter (T), and the clearance of the impeller from the tank bottom(C) were also studied. The agitation speed (N) was varied in the range of 50-800 rpm. It was found that the value of K
... Show More
This study is concentrated to investigate the effects of aeration and stirring speed on the volumetric mass transfer coefficient (KLa). A dynamic technique was used in estimating KLa values in order to achieve the aim of this study.
This study was done in 10L bioreactor by using two medias:-
- Dionized water
- Xanthan solution (1 g /L)
Moreover, the research covered a comparison between the obtained values of KLa.
The Xanthan solution was used because of its higher viscosity in comparison with water. It behaves similarly to the cultivation medium when organisms are cultivated in a bioreactor. Growth of organisms in the reactor l
... Show More
