Preferred Language
Articles
/
jcoeduw-1361
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 09 2022
Journal Name
Engineering, Technology & Applied Science Research
A Semi-Empirical Equation based on the Strut-and-Tie Model for the Shear Strength Prediction of Deep Beams with Multiple Large Web Openings
...Show More Authors

The behavior and shear strength of full-scale (T-section) reinforced concrete deep beams, designed according to the strut-and-tie approach of ACI Code-19 specifications, with various large web openings were investigated in this paper. A total of 7 deep beam specimens with identical shear span-to-depth ratios have been tested under mid-span concentrated load applied monotonically until beam failure. The main variables studied were the effects of width and depth of the web openings on deep beam performance. Experimental data results were calibrated with the strut-and-tie approach, adopted by ACI 318-19 code for the design of deep beams. The provided strut-and-tie design model in ACI 318-19 code provision was assessed and found to be u

... Show More
View Publication
Scopus (6)
Crossref (8)
Scopus Crossref
Publication Date
Fri Sep 30 2011
Journal Name
Iraqi Journal Of Science
Using the band ratio classification method to detect the regions that need to remove sedimentation in Tigris River
...Show More Authors

LandSat Satellite ETM+ image have been analyzed to detect the different depths of regions inside the Tigris river in order to detect the regions that need to remove sedimentation in Baghdad in Iraq Country. The scene consisted of six bands (without the thermal band), It was captured in March ٢٠٠١. The variance in depth is determined by applying the rationing technique on the bands ٣ and ٥. GIS ٩. ١ program is used to apply the rationing technique and determined the results.

View Publication
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Evaluating the Performance and Behavior of CNN, LSTM, and GRU for Classification and Prediction Tasks
...Show More Authors

     Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Classical and Statistical Optimization of Medium Composition for Promoting Prodigiosin Produced by Local Isolate of Serratia Marcescens
...Show More Authors

Prodigiosin is a ‘natural red pigment produced by Serratia marcescens which exhibits immunosuppressive and anticancer properties in addition to antimicrobial activities. This work presents an attempt to maximize the production of prodigiosin by two different strategies: one factor at time (OFAT) and statistical optimization. The result of OFAT revealed that sucrose and peptone were the best carbon and nitrogen sources for pigment production with concentration of prodigiosin of about 135 mg/ L. This value was increased to 331.6mg/ L with an optimized ratio of C/N (60:40) and reached 356.8 with pH 6 and 2% inoculum size at end of classical optimization. Statistical experimental design based on Response surface methodology was co

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Dec 01 2007
Journal Name
Journal Of Economics And Administrative Sciences
The analysis of time series considers one of the mathematical and statistical methods in explanation of the nature phenomena and its manner in a specific time period.
...Show More Authors

The analysis of time series considers one of the mathematical and statistical methods in explanation of the nature phenomena and its manner in a specific time period.

Because the studying of time series can get by building, analysis the models and then forecasting gives the priority for the practicing in different fields, therefore the identification and selection of the model is of great importance in spite of its difficulties.

The selection of a standard methods has the ability for estimation the errors in the estimated the parameters for the model, and there will be a balance between the suitability and the simplicity of the model.

In the analysis of d

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Lecture Notes Of The Institute For Computer Sciences, Social Informatics And Telecommunications Engineering
Sensor Data Classification for the Indication of Lameness in Sheep
...Show More Authors

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Aug 23 2013
Journal Name
International Journal Of Computer Applications
Image Compression based on Quadtree and Polynomial
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Luminance pyramid for image generation and colorization
...Show More Authors

Many image processing and machine learning applications require sufficient image feature selection and representation. This can be achieved by imitating human ability to process visual information. One such ability is that human eyes are much more sensitive to changes in the intensity (luminance) than the color information. In this paper, we present how to exploit luminance information, organized in a pyramid structure, to transfer properties between two images. Two applications are presented to demonstrate the results of using luminance channel in the similarity metric of two images. These are image generation; where a target image is to be generated from a source one, and image colorization; where color information is to be browsed from o

... Show More
Scopus (2)
Scopus
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Effect of Solid Particle Properties on Heat Transfer and Pressure Drop in Packed Duct
...Show More Authors

This work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Time Prediction of Dynamic Behavior of Glass Fiber Reinforced Polyester Composites Subjected to Fluctuating Varied Temperatures
...Show More Authors

The reduction of vibration properties for composite material (woven roving E-glass fiber plies in thermosetting polyester matrix) is investigated at the prediction time under varied combined temperatures (60  to -15) using three types of boundary conditions like (CFCF, CCCF, and CFCC). The vibration properties are the amplitude, natural frequency, dynamic elastic moduli (young modulus in x, y directions and shear modulus in 1, 2 plane) and damping factor. The natural frequency of a system is a function of its elastic properties, dimensions, and mass. The woven roving glass fiber has been especially engineered for polymer reinforcement; but the unsaturated thermosetting polyester is widely used, offering a good balance of vibration p

... Show More
View Publication Preview PDF