Many undergraduate learners at English departments who study English as a foreign language are unable to speak and use language correctly in their post -graduate careers. This problem can be attributed to certain difficulties, which they faced throughout their education years that hinder their endeavors to learn. Therefore, this study aims to discover the main difficulties faced by EFL students in language learning and test the difficulty variable according to gender and college variables then find suitable solutions for enhancing learning. A questionnaire with 15 items and 5 scales were used to help in discovering the difficulties. The questionnaire was distributed to the selected sample of study which consists of 90 (male and female) students selected randomly from the 3rd and 4th year class levels at English departments from colleges of Languages and Education (Ibn-Rushd) at the University of Baghdad. The results of the study showed that EFL students face difficulties in language learning such as the role of society in discouraging English language learning, the learners’ shyness, which prevents them from speaking English in fear of making mistakes, lack of motivation, and the influence of class size and crowdedness. After analyzing the results, some recommendations and suggestions were presented to solve the problem and eliminate difficulties.
The study aimed to examine the impact of audit committee characteristics on the practices of intellectual capital disclosure in the annual reports of Bank and Insurance companies listed on Palestine Exchange, through performing content analysis of the annual reports for the study sample which totaled thirteen companies, including six banks and seven insurance companies. To achieve the study objectives, the study employed a content analysis approach in order to analyze the content of the intellectual capital disclosure practice, in addition, the study used cross-sectional with longitudinal data for time series for a period of time between 2014-2019. The empirical results indicated that financial expertise and the number of meeting
... Show MoreWith today's rapid and full of dangers the world banking sector is one of the most vital sectors at risk, and on the supervisory bodies responsible for monitoring the work of banks to take an active role in influencing the banks and put on the right track and is compatible with internationally approved curriculum. The lie of the research problem in the weak supervisory role of the Central Bank for banks in general and private banks in particular, limited the process of performance audit carried out by the Federal Office of Financial Supervision in auditing oversight role of the Central Bank control over the banks, according to the methods of performance audit followed by the upper bodies of financial control and accounting, And it was ba
... Show MoreDetermining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreOffline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreDeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio
... Show MoreIn the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreThe issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting r
... Show MoreThe theme of love has been and still is the interest of authors and writers for it is closely related to people’s lives. That great passion has helped them express genuine thoughts pertinent to that theme that has given rise to many debates, some are vague and others controversial. In his (strait is the gate), (La Porte étroite), André Gide has sought to shed light on his characters perspective of love and its relationship with sacredness and divine happiness. Indeed these characters have found often themselves restrained, chained and exhausted, by tough religious commands that have imposed on them spiritual commitments and duties too hard to break.
André Gide has revealed a protestant deviation from the perfection theme tha
... Show MoreAbstract: A novel design of Mach Zehnder Interferometer (MZI) in terms of using special type of optical fiber that has double clad with graded distribution of the refractive index that can be easily implemented practically was suggested and simulated in this work. The suggested design is compact, rapid, and is simple to be modified and tested. The simulated design contains a MZI of 1546.74 nm of central wavelength that is constructed using special type of double clad optical fiber that has two different numerical apertures. The first aperture will supply single mode propagation via its core, while the second numerical aperture supports a zigzag wave propagation (multimode) in the first clad region. The interferometer’s
... Show MoreWith the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show More