Preferred Language
Articles
/
jcoeduw-1355
Spatial Analysis of Soil Characteristics and its Effect on Determining the Susceptibility of lands of the RasheedRegion: A Study in Soil Geography
...Show More Authors

Twelve pends were selected and distributed on three verticals transects paths on the Tigers river in Al Rasheed county.Passing through land covers, that classified and covers the whole region. Based on the 8 Landsat of the year 2015. It was oriental classified by using Erdas 10.2 . The pedons were distributed on the area of each varicty of these classes. the series of soil according of the transect series (DW74,MMg,DMu6 , Df96) respectively were represented P1 , P2 , P3 , P4  .

The second transits series(DM97,MM5,DM96,DF115) respectively were  represented P5 , P6 , P7 , P8  .The third  transits series(DM46,MMg,MF12,MM11) respectively were  represented P9 , P10 , P11 , P12  .The highest variation was the salinity (Ec) Electrical conductivity and the value of coefficient of variance c.v (112.2) and the lowest variation was for (Ph) soil reaction and its value of c.v (3.26).The land of the study area was classified into four classes of capability according to the USA classification of land capability classification (1960) Class I , Class II , Class III , Class IV . The largest area was the third class with (19672)ha . and the lowest area of the first class was (5224)ha , It was found that the most important determinates in subclass capability is the problem of salinity which was highly , and the watertable of Imperfectly drained type . The Capability Units category included internal drainage,W3 , Salinity , C3 and C2 .

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Arabic Cyberbullying Detection Using Support Vector Machine with Cuckoo Search
...Show More Authors

      Cyberbullying is one of the biggest electronic problems that takes multiple forms of harassment using various social media. Currently, this phenomenon has become very common and is increasing, especially for young people and adolescents. Negative comments have a significant and dangerous impact on society in general and on adolescents in particular. Therefore, one of the most successful prevention methods is to detect and block harmful messages and comments. In this research, negative Arabic comments that refer to cyberbullying will be detected using a support vector machine algorithm. The term frequency-inverse document frequency vectorizer and the count vectorizer methods were used for feature extraction, and the results wer

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Educational Data Mining For Predicting Academic Student Performance Using Active Classification
...Show More Authors

     The increasing amount of educational data has rapidly in the latest few years. The Educational Data Mining (EDM) techniques are utilized to detect the valuable pattern so that improves the educational process and to obtain high performance of all educational elements. The proposed work contains three stages: preprocessing, features selection, and an active classification stage. The dataset was collected using EDM that had a lack in the label data, it contained 2050 records collected by using questionnaires and by using the students’ academic records. There are twenty-five features that were combined from the following five factors: (curriculum, teacher, student, the environment of education, and the family). Active learning ha

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Galaxy Morphological Image Classification using ResNet
...Show More Authors

     Machine learning-based techniques are used widely for the classification of images into various categories. The advancement of Convolutional Neural Network (CNN) affects the field of computer vision on a large scale. It has been applied to classify and localize objects in images. Among the fields of applications of CNN, it has been applied to understand huge unstructured astronomical data being collected every second. Galaxies have diverse and complex shapes and their morphology carries fundamental information about the whole universe. Studying these galaxies has been a tremendous task for the researchers around the world. Researchers have already applied some basic CNN models to predict the morphological classes

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Plants Leaf Diseases Detection Using Deep Learning
...Show More Authors

     Agriculture improvement is a national economic issue that extremely depends on productivity. The explanation of disease detection in plants plays a significant role in the agriculture field. Accurate prediction of the plant disease can help treat the leaf as early as possible, which controls the economic loss. This paper aims to use the Image processing techniques with Convolutional Neural Network (CNN). It is one of the deep learning techniques to classify and detect plant leaf diseases. A publicly available Plant village dataset was used, which consists of 15 classes, including 12 diseases classes and 3 healthy classes.  The data augmentation techniques have been used. In addition to dropout and weight reg

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More