Preferred Language
Articles
/
jcoeduw-1355
Spatial Analysis of Soil Characteristics and its Effect on Determining the Susceptibility of lands of the RasheedRegion: A Study in Soil Geography
...Show More Authors

Twelve pends were selected and distributed on three verticals transects paths on the Tigers river in Al Rasheed county.Passing through land covers, that classified and covers the whole region. Based on the 8 Landsat of the year 2015. It was oriental classified by using Erdas 10.2 . The pedons were distributed on the area of each varicty of these classes. the series of soil according of the transect series (DW74,MMg,DMu6 , Df96) respectively were represented P1 , P2 , P3 , P4  .

The second transits series(DM97,MM5,DM96,DF115) respectively were  represented P5 , P6 , P7 , P8  .The third  transits series(DM46,MMg,MF12,MM11) respectively were  represented P9 , P10 , P11 , P12  .The highest variation was the salinity (Ec) Electrical conductivity and the value of coefficient of variance c.v (112.2) and the lowest variation was for (Ph) soil reaction and its value of c.v (3.26).The land of the study area was classified into four classes of capability according to the USA classification of land capability classification (1960) Class I , Class II , Class III , Class IV . The largest area was the third class with (19672)ha . and the lowest area of the first class was (5224)ha , It was found that the most important determinates in subclass capability is the problem of salinity which was highly , and the watertable of Imperfectly drained type . The Capability Units category included internal drainage,W3 , Salinity , C3 and C2 .

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Modern Applied Science
New Combined Technique for Fingerprint Image Enhancement
...Show More Authors

This paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one

... Show More
Publication Date
Mon Aug 30 2021
Journal Name
Al-kindy College Medical Journal
Odontogenic Keratocyst
...Show More Authors

Purpose: to review in detail various aspects of odontogenic keratocyst, emphasizing recent nomenclature, clinical, histopathological, recurrence, and management of odontogenic keratocyst.

Methods: To achieve the objective of this review, a manual search was done in hard copy books of oral and maxillofacial pathology, and an electronic search was done in the google website, oral and maxillofacial pathology E-books, virtual database sites, such as PubMed, Research Gate, Academia, and Google scholar using the descriptors: odontogenic cyst, kerato odontogenic tumor, odontogenic keratocyst, and jaws cystic lesion. The eligibility criteria for selecting articles were: to be in the English language, stu

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Jun 14 2022
Journal Name
International Journal Of Health Sciences
Knee osteoarthritis
...Show More Authors

Osteoarthritis (OA) is recognized as a main public health difficult. It is one of the major reasons of reduced function that diminishes quality of life worldwide. Osteoarthritis is a very common disorder affecting the joint cartilage. As there is no cure for osteoarthritis, treatments currently focus on management of symptoms. Pain relief, improved joint function, and joint stability are the main goals of therapy. The muscle weakness and muscle atrophy contribute to the disease process. So, rehabilitation and physiotherapy were often prescribed with the intention to alleviate pain and increase mobility. Medical therapy provides modest benefits in pain reduction and functional improvement; however, non-steroidal anti-inflammatory dru

... Show More
View Publication
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More