Thisstudy aims to determine the specifications of obese women accordingto the heightand type of obesity. It also aimstoidentify the significance of differences in choosing ready-made clothes for the research sample. Finally, the significance of differences in choosing ready-made clothes according to the variable of binaryclassification ofobesity is also identified.The study sample includes obese women: employees, non-employees and students with the age group (18-50) years.The weights and lengths of the sample have been taken to suit the group of obese women.Aquestionnaire in the form of an open question was distributed among (50) obese womenso as to extract the items of the questionnaire. After that, the questionnaire was distributed among (100) obese women to obtain answers. Thedata were statistically analyzed and the BMI indicated thatthere were four types of obesity for the sample studied: overweight and high obesity, very high obesity, excessive obesity, and obese to the extreme.Itwas called abinary classification. The first type included (42) obese women,whilethe second type included (58) obese women .The bodies of the sample were identified: (22%)of the sample representedshort obese women,the ratio of (68%) represented obese women of medium-length, and the proportion of (10%)represented tall obese women. It has become clear through the recognition of the significance of differences when choosing clothes in general, that they areall statistically significantexcept for the seventh item (the best clothes are those with dark-colors, because they make me look thinner). Besides,there are no individual differencesin the sample responses in favor of the answer (sometimes) at the rate of (5.180).
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreElectrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data
volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the
Abstract
The current research aims to identify the analysis of the questions for the book of literary criticism for the preparatory stage according to Bloom's classification. The research community consists of (34) exercises and (45) questions. The researcher used the method of analyzing questions and prepared a preliminary list that includes criteria that are supposed to measure exercises, which were selected based on Bloom's classification and the extant literature related to the topic. The scales were exposed to a jury of experts and specialists in curricula and methods of teaching the Arabic language. The scales obtained a complete agreement. Thus, it was adapted to become a reliable instrument in this
... Show MoreThe purpose of the study is the city of Baghdad, the capital of Iraq, was chosen to study the spectral reflection of the land cover and to determine the changes taking place in the areas of the main features of the city using the temporal resolution of multispectral bands of the satellite Landsat 5 and 8 for MSS and OLI sensors respectively belonging to NASA and for the period 1999-2021, and calculating the increase and decrease in the basic features of Baghdad. The main conclusions of the study were, This study from 1999 to 2021 and in two different seasons: the Spring of the growing season and Summer the dry season. When using the supervised classification method to determine the differences, the results showed remarkable changes. Where h
... Show MoreIn this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreThis research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show MoreTourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective
... Show MoreThis research paper aims at studying the effect of adopting the corporate social responsibility on marketing performance indicators, where the study adopted the descriptive method for theoretical concepts, in addition to the statistical approach by using the SPSS v25 program to analyze the questionnaire and test the hypotheses of the study. The results showed that there is a positive correlation between social responsibility and marketing performance indicators, and the study found that it is better for NAFTAL Company to mix the environmental and social responsibilities in order to improve its marketing performance. Also, the study recommended that Naftal should adopt the four responsibilities equally, correctly and make its work
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show More