Corpus linguistics is a methodology in studying language through corpus-based research. It differs from a traditional approach in studying a language (prescriptive approach) in its insistence on the systematic study of authentic examples of language in use (descriptive approach).A “corpus” is a large body of machine-readable structurally collected naturally occurring linguistic data, either written texts or a transcription of recorded speech, which can be used as a starting-point of linguistic description or as a means of verifying hypotheses about a language. In the past decade, interest has grown tremendously in the use of language corpora for language education. The ways in which corpora have been employed in language pedagogy can be divided into two main categories: indirect and direct application. In the former corpora are used in designing and developing the syllabuses, dictionaries, tests, and teaching materials, while later, corpus data are used for data-driven learning and what is known as grammar safari. So this research aims at employing corpus data in teaching Arabic grammar. Functional syntactic analysis of corpus is a must for this purpose, so Quranic corpus is the most appropriate one. In this paper,I examined the specification phenomenon (التمييز) in Quranic corpus and compared the descriptive and prescriptive approaches in teaching causative object as a grammatical phenomenon in Arabic.
This study investigated a novel application of forward osmosis (FO) for oilfield produced water treatment from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). FO is a part of a zero liquid discharge system that consists of oil skimming, coagulation/flocculation, forward osmosis, and crystallization. Treatment of oilfield produced water requires systems that use a sustainable driving force to treat high-ionic-strength wastewater and have the ability to separate a wide range of contaminants. The laboratory-scale system was used to evaluate the performance of a cellulose triacetate hollow fiber CTA-HF membrane for the FO process. In this work, sodium chloride solution was used as a feed solution (FS) with a concentratio
... Show MoreThe Arabic calligraphy, in the early days of Islam, was used for the purpose of decorating the walls of mosques from inside and outside. Hence, this decorative art must be actively involved in enriching the designs of Islamic fabrics and costumes because it has a highly qualified and aesthetically pleasing look and expresses the originality of the Arab spirit. The research is divided into two section: the first section included the following topics: First "A historical overview of the art of decoration in Islamic Arab thought". Second "linear formations of decorative designs, and the subject of intellectual aesthetic taste of the art of decorating. This section tackles two subsections: first "the beauty of thought between the function an
... Show MoreIn this paper generalized spline method is used for solving linear system of fractional integro-differential equation approximately. The suggested method reduces the system to system of linear algebraic equations. Different orders of fractional derivative for test example is given in this paper to show the accuracy and applicability of the presented method.
Objective: The purpose of this study was to assess the effectiveness of Vibriophage Universiti Sains Malaysia 8 (VPUSM 8), a bacteriophage that destroys bacteria, in managing the proliferation of Vibrio cholerae, specifically the El Tor serotype, as an alternate therapeutic strategy. Methods: The study entailed subjecting water samples from Kelantan, Malaysia, to reproduce the natural circumstances that promote the growth of V. cholerae. Subsequently, the samples were contaminated with the V. cholerae O1 El Tor Inaba strain and treated using VPUSM 8. The study employed a controlled experimental design, wherein the samples were divided into three groups, each experiencing different treatment methods. Quantifying the number of colony-
... Show MoreThe issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreReliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.