Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to those gotten from other popular methods inthis field, such as Zero Crossing Rate (ZCR), Amplitude Descriptor (AD), Short Time Energy (STE), and Volume (Vo). The test results indicated, that the attained averageaccuracy of classification is improved up to94.9232% for training set and 95.8666%for testing set.The classification performance of these two extracted featuresets is studied individually, and then they used together as one feature set. Theiroverall performance is investigated, the test results showed that the proposed methods give high classification rates for the audio.
The wind atlas analysis and application program, WAsP, is used to assess wind
energy potential، wind climate from geostrophic winds of a given area. In this paper,
metrological data from Ali Algharby station was used to predict the wind resource
and wind turbine energy production at Ali Algharby site.
Data from metrological station was used to draw up observed wind climates at the
anemometer site. Site contour map was digitized using WAsP Map Editortool.
Observed wind climate, digitized contour map, terrain roughness length, obstacle
groups and their porosity were used as input to the WAsP model. Vestas V182, 1.65
MW turbine was used. Weibull probability distribution graph of wind speed, power
density were dra
<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant m
... Show MoreTarget tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocr
... Show MoreEnergy use is second to staffing in building operating costs. Sustainable technology in the energy sector is based on utilizing renewable sources of energy such as solar, wind, glazing systems, insulation. Other areas of focus include heating, ventilation and air conditioning; novel materials and construction methods; improved sensors and monitoring systems; and advanced simulation tools that can help building designers make more energy efficient choices. The objective of this research is studying the effect of insulations on energy consumption of buildings in Iraq and identifying the amount of energy savings from application th
... Show MoreThe aim of this study is to look at the potential of a local sustainable energy network in a pre-existing context to develop a novel design beneficial to the environment. Nowadays, the concept of smart cities is still in the developmental phase/stage andwe are currently residing in a transitional period, therefore it is very important to discover new solutions that show direct benefits the people may get from transforming their city from a traditional to a smart city. Using experience and knowledge of successful projects in various European and non-European smart cities, this study attempts to demonstrate the practical potential of gradually moving existing cities to t
... Show MoreIn this paper we prove that the planar self-assembling micelle system
has no Liouvillian, polynomial and Darboux first integrals. Moreover, we show that the system
has only one irreducible Darboux polynomial with the cofactor being if and only if via the weight homogeneous polynomials and only two irreducible exponential factors and with cofactors and respectively with be the unique Darbox invariant of system.
In this paper, we establish the conditions of the occurrence of the local bifurcations, such as saddle node, transcritical and pitchfork, of all equilibrium points of an eco-epidemiological model consisting of a prey-predator model with SI (susceptible-infected) epidemic diseases in prey population only and a refuge-stage structure in the predators. It is observed that there is a transcritical bifurcation near the axial and free predator equilibrium points, near disease-free equilibrium point is a saddle-node bifurcation and near positive (coexistence) equilibrium point is a saddle-node bifurcation, a transcritical bifurcation and a pitchfork bifurcation. Further investigations for Hopf bifurcation near coexistence equilibrium point are
... Show MoreIn this research, a Co-polymer (Styrene / Allyl-2.3.4.6-tetra-O-acetyl-β-D-glucopyranoside) was synthesized from glucose in four steps using Addition Polymerization according to the radical mechanism using Benzoyl Peroxide (BP) as initiator. Initially, Allyl-2.3.4.6-tetra-O-acetyl-β-D-glucopyranoside monomer was prepared in three steps and the reaction was followed by (HPLC, FT-IR, TLC), in the fourth step the monomer was polymerized with Styrene and the structure was determined by FT-IR and NMR spectroscopy. The reaction conditions (temperature, reaction time, material ratios) were also studied to obtain the highest yield, the relative, specific and reduced viscosity of the prepared polymer was determined, from which the viscosity ave
... Show MoreInfertility is a disease of the reproductive system defined by the failure to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual intercourse. Worldwide, infertility affects approximately 15% of all couples trying to conceive. Male infertility is responsible for about 50% of the infertility cases. Chromosomal abnormalities and Y-chromosome microdeletions are the most common genetic causes of male infertility. Klinefelter syndrome (KS) is the most prevalent factor of the chromosomal abnormality in the infertile male. Azoospermia Factor (AZF) microdeletions located on the Y chromosome are one of the recurrent genetic cause of male infertility. This study aims to investigate the prevalence of chromosomal anoma
... Show More