Preferred Language
Articles
/
jcoeduw-1207
Audio Classification Based on Content Features
...Show More Authors

Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to those gotten from other popular methods inthis field, such as Zero Crossing Rate (ZCR), Amplitude Descriptor (AD), Short Time Energy (STE), and Volume (Vo). The test results indicated, that the attained averageaccuracy of classification is improved up to94.9232% for training set and 95.8666%for testing set.The classification performance of these two extracted featuresets is studied individually, and then they used together as one feature set. Theiroverall performance is investigated, the test results showed that the proposed methods give high classification rates for the audio.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
Design and Analysis WIMAX Network Based on Coverage Planning
...Show More Authors

In this paper, wireless network is planned; the network is predicated on the IEEE 802.16e standardization by WIMAX. The targets of this paper are coverage maximizing, service and low operational fees. WIMAX is planning through three approaches. In approach one; the WIMAX network coverage is major for extension of cell coverage, the best sites (with Band Width (BW) of 5MHz, 20MHZ per sector and four sectors per each cell). In approach two, Interference analysis in CNIR mode. In approach three of the planning, Quality of Services (QoS) is tested and evaluated. ATDI ICS software (Interference Cancellation System) using to perform styling. it shows results in planning area covered 90.49% of the Baghdad City and used 1000 mob

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Electrical And Electronics Engineering
HF Wave Propagation Prediction Based On Passive Oblique Ionosonde
...Show More Authors

High frequency (HF) communications have an important role in long distances wireless communications. This frequency band is more important than VHF and UHF, as HF frequencies can cut longer distance with a single hopping. It has a low operation cost because it offers over-the-horizon communications without repeaters, therefore it can be used as a backup for satellite communications in emergency conditions. One of the main problems in HF communications is the prediction of the propagation direction and the frequency of optimum transmission (FOT) that must be used at a certain time. This paper introduces a new technique based on Oblique Ionosonde Station (OIS) to overcome this problem with a low cost and an easier way. This technique uses the

... Show More
View Publication Preview PDF
Scopus
Publication Date
Thu Aug 02 2012
Journal Name
International Journal Of Advanced Research In Computer Science
User Authentication based on Keystroke Dynamics Using Backpropagation Network
...Show More Authors

Computer systems and networks are being used in almost every aspect of our daily life; as a result the security threats to computers and networks have also increased significantly. Traditionally, password-based user authentication is widely used to authenticate legitimate user in the current system0T but0T this method has many loop holes such as password sharing, shoulder surfing, brute force attack, dictionary attack, guessing, phishing and many more. The aim of this paper is to enhance the password authentication method by presenting a keystroke dynamics with back propagation neural network as a transparent layer of user authentication. Keystroke Dynamics is one of the famous and inexpensive behavioral biometric technologies, which identi

... Show More
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Moving Objects Detection Based on Frequency Domain: image processing
...Show More Authors

In this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
A Cryptosystem for Database Security Based on TSFS Algorithm
...Show More Authors

Implementation of TSFS (Transposition, Substitution, Folding, and Shifting) algorithm as an encryption algorithm in database security had limitations in character set and the number of keys used. The proposed cryptosystem is based on making some enhancements on the phases of TSFS encryption algorithm by computing the determinant of the keys matrices which affects the implementation of the algorithm phases. These changes showed high security to the database against different types of security attacks by achieving both goals of confusion and diffusion.

View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Aip Conference Proceedings
Developing a lightweight cryptographic algorithm based on DNA computing
...Show More Authors

This work aims to develop a secure lightweight cipher algorithm for constrained devices. A secure communication among constrained devices is a critical issue during the data transmission from the client to the server devices. Lightweight cipher algorithms are defined as a secure solution for constrained devices that require low computational functions and small memory. In contrast, most lightweight algorithms suffer from the trade-off between complexity and speed in order to produce robust cipher algorithm. The PRESENT cipher has been successfully experimented on as a lightweight cryptography algorithm, which transcends other ciphers in terms of its computational processing that required low complexity operations. The mathematical model of

... Show More
Crossref (7)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
A New Separable Moments Based on Tchebichef-Krawtchouk Polynomials
...Show More Authors

View Publication
Scopus (22)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Sat Aug 01 2015
Journal Name
2015 Ieee Conference On Computational Intelligence In Bioinformatics And Computational Biology (cibcb)
Granular computing approach for the design of medical data classification systems
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Bio Web Of Conferences
Concepts of statistical learning and classification in machine learning: An overview
...Show More Authors

Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Classification of brain tumors using the multilayer perceptron artificial neural network
...Show More Authors

Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect

... Show More
View Publication Preview PDF
Crossref (3)
Crossref