Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to those gotten from other popular methods inthis field, such as Zero Crossing Rate (ZCR), Amplitude Descriptor (AD), Short Time Energy (STE), and Volume (Vo). The test results indicated, that the attained averageaccuracy of classification is improved up to94.9232% for training set and 95.8666%for testing set.The classification performance of these two extracted featuresets is studied individually, and then they used together as one feature set. Theiroverall performance is investigated, the test results showed that the proposed methods give high classification rates for the audio.
Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show MoreIn this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water
... Show MoreThe paper tackles two topics. The first is about the term "Ремейк" which is very common in contemporary Russian literature; it has counterparts such as " Обработка" and " Переделка", where these two may indicate any of the following meanings (remake, reformulate, rewrite, treatment, modification, change). It has been shown that this term does not have a stable definition. Also, the role of this term in literary studies has been mentioned along with how it has come to its peak of use in post-modern literature.
The second is that I have taken a sample of well-known works in Russian literature " On the Eve, On the Eve " by the contemporary Russian writer YevgueniBobov, and shown the effort of the writer
... Show MoreThis study compared and classified of land use and land cover changes by using Remote Sensing (RS) and Geographic Information Systems (GIS) on two cities (Al-Saydiya city and Al-Hurriya) in Baghdad province, capital of Iraq. In this study, Landsat satellite image for 2020 were used for (Land Use/Land Cover) classification. The change in the size of the surface area of each class in the Al-Saydiya city and Al-Hurriya cities was also calculated to estimate their effect on environment. The major change identified, in the study, was in agricultural area in Al-Saydiya city compare with Al-Hurriya city in Baghdad province. The results of the research showed that the percentage of the green
دور المواد النانوية في إعادة تصنيف تكاليف المنتج الصناعي الحديث
This study focusses on the effect of using ICA transform on the classification accuracy of satellite images using the maximum likelihood classifier. The study area represents an agricultural area north of the capital Baghdad - Iraq, as it was captured by the Landsat 8 satellite on 12 January 2021, where the bands of the OLI sensor were used. A field visit was made to a variety of classes that represent the landcover of the study area and the geographical location of these classes was recorded. Gaussian, Kurtosis, and LogCosh kernels were used to perform the ICA transform of the OLI Landsat 8 image. Different training sets were made for each of the ICA and Landsat 8 images separately that used in the classification phase, and used to calcula
... Show Morethe study aimed to identify the impact of the types of cooking utensils in transition metal elements to food and the effect of acid and storage in the concentration of these elements. used five types of cooking utensils including aluminum. tefal, astainls steel, glass. (pyrex), and ceramic prepared in it the food meal. the same meals were repeated add to them acid. the estimate of mineral elements in the meal prepared before storage and after storage in refrigerator temperature degree. the result shows the increase of aluminum concentration in the meals that prepared in aluminum pot reaching 2.913 pmm while reached less concentration in the meal prepared in astainls pot reaching 0.325 pmm. the highest concentration of iron reached 25.2 p
... Show More