ABSTRACT Background: This study measured the effects of three parameters pH value, length of immersion and type of archwire on metal ions released from orthodontic appliances. Materials and Methods: Ninety maxillary halves simulated fixed orthodontic appliances that were immersed in artificial saliva of different pH values (6.75, 5 and 3.5) during 28 day period. Three types of archwires were used: stainless steel, nickel titanium and thermal activated nickel titanium. The quantity of nickel and chromium ions was determined with the use of atomic force spectrophotometer while iron ions by spectrophotometer. Each orthodontic set was weighted two times, before the ligation and immersion in the artificial saliva and after 28 days at the end of immersion period using analytic balance device. Results: The release different metal ions was observed: nickel (Ni), chromium (Cr) and iron (Fe)). Statistically analysis of variance (ANOVA) and t-test were used. Results showed that (1) the appliances released measurable quantities ofall ions examined; (2) the change in pH had a very strong effect on the release of ions; (3) the release of ions was dependent on wire composition, but it was not proportionalto the content of metal in the wire and (4) orthodontic samples showed decreases in the weight at the end of the study. Conclusion: Levels of released ions are sufficient to cause delayed allergic reactions. This must be taken into account when type of archwire is selected, especially in patients with hypersensitivityor compromised oral hygiene.
The gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating
... Show More