Preferred Language
Articles
/
jbcd-968
A Clinical Method for Prediction of Alveolar Bone Mineral Density in the Area between the Second Premolar and First Molar in Iraqi Adults with Class I Occlusion
...Show More Authors

Background: Orthodontic mini-implants are increasingly used in orthodontics and the bone density is a very important factor in stabilization and success of mini-implant. The aim of this study was to observe the relationship among maximum bite force (MBF); body mass index (BMI); face width, height and type; and bone density in an attempt to predict bone density from these variables to eliminate the need for CT scan which have a highly hazard on patient. Materials and Methods: Computed tomographic (CT) images were obtained for 70 patients (24 males and 46 females) with age range 18-30 years. The maxillary and mandibular buccal cortical and cancellous bone densities were measured between 2nd premolar and 1st molar at two levels from the alveolar crest (3 and 6 mm). Face height and width were measured from CT. Clinically; Maximum bite force was measured on first molar region unilaterally by a digital device. The sample was divided into two groups according to the body mass index into; normal and overweight. Results: The results obtained showed that there were no statistical significant differences in MBF or bone density in both genders. Only the cortical bone density in maxilla in overweight group tended to be higher than normal BMI group. The face width and height correlated significantly negatively with MBF which correlated significantly positively with cortical bone density. Conclusions: It was concluded that a prediction of cortical bone density of preselected areas can be made from maximum bite force, body mass index and inter-zygomatic width.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Compare Prediction by Autoregressive Integrated Moving Average Model from first order with Exponential Weighted Moving Average
...Show More Authors

The prediction process of time series for some time-related phenomena, in particular, the autoregressive integrated moving average(ARIMA) models is one of the important topics in the theory of time series analysis in the applied statistics. Perhaps its importance lies in the basic stages in analyzing of the structure or modeling and the conditions that must be provided in the stochastic process. This paper deals with two methods of predicting the first was a special case of autoregressive integrated moving average which is ARIMA (0,1,1) if the value of the parameter equal to zero, then it is called Random Walk model, the second was the exponential weighted moving average (EWMA). It was implemented in the data of the monthly traff

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 20 2024
Journal Name
Journal Of Petroleum Research And Studies
Advanced Machine Learning application for Permeability Prediction for (M) Formation in an Iraqi Oil Field
...Show More Authors

Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Jun 30 2018
Journal Name
Iraqi Journal Of Medical Sciences
CLINICAL UTILITY OF URINARY ANTIGEN TEST AND MOLECULAR METHOD FOR DETECTION OF LEGIONELLA PNEUMOPHILA
...Show More Authors

Background: Legionella pneumophila (L. pneumophila) is gram-negative bacterium, which causes Legionnaires’ disease as well as Pontiac fever. Objective: To determine the frequency of Legionella pneumophila in pneumonic patients, to determine the clinical utility of diagnosing Legionella pneumonia by urinary antigen testing (LPUAT) in terms of sensitivity and specificity, to compares the results obtained from patients by urinary antigen test with q Real Time PCR (RT PCR) using serum samples and to determine the frequency of serogroup 1 and other serogroups of L. pneumophila. Methods: A total of 100 pneumonic patients (community acquired pneumonia) were enrolled in this study during a period between October 2016 to April 2017; 92 sam

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Bitcoin Prediction with a hybrid model
...Show More Authors

. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a

... Show More
View Publication
Scopus (14)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Bitcoin Prediction with a hybrid model
...Show More Authors

In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc

... Show More
Scopus (14)
Scopus
Publication Date
Mon Jan 02 2017
Journal Name
Journal Of Educational And Psychological Researches
The impact of the proposed strategy in accordance with the objectives of science in achievement and some science operations at the second-grade middle students in chemistry
...Show More Authors

It aim current researchs֬ to identify the impact of a proposed strategy in accordance with the objectives of science in the achievement and some science processes, where the experimental method was adopted, and define the research community was students second grade averag in Education Bagdad / Rusafa third, research sample intentionally chosen as school Radwan, and (30) students experimental group and (29) of control group, research tools were achievement test and the test of science operations and use the appropriate statistical tools to process information and data, showing results, the experimental group surpassed the control group in the collection and operations science, and light it, the researcher recommended several recommendat

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Ocular Pharmacology And Therapeutics
Formulation and<i>In Vitro</i>Evaluation of Cyclosporine-A Inserts Prepared Using Hydroxypropyl Methylcellulose for Treating Dry Eye Disease
...Show More Authors

View Publication
Scopus (26)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Recurrent Stroke Prediction using Machine Learning Algorithms with Clinical Public Datasets: An Empirical Performance Evaluation
...Show More Authors

Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Aip Conference Proceedings
Analysis of performance measures with single channel fuzzy queues under two class by using ranking method
...Show More Authors

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Feb 10 2026
Journal Name
Mustansiria Dental Journal
Soft tissue measurements of Iraqi individuals with Cl I and Cl III skeletal pattern: a comparative cephalometric study
...Show More Authors

View Publication