Background: Polymethylmethacrylate (PMMA) has relatively unsatisfactory mechanical properties such as low flexural strength and impact strength also dimensional instability. Material and method: Zirconium silicate nanoparticles were coated with a layer of trimethoxysilylpropylmethacrylate (TMSPM) before sonication in monomer (MMA) with the percentages 1% and 1.5% by weight then mixed with powder using conventional procedure, (150) samples were prepared and divided into three groups, each group consisted of (50) samples, the first group prepared from PMMA without addition (control), another group with the addition of 1% wt Zrsio4 nanoparticles (experimental) and the third one with 1.5% wt Zrsio4 nanoparticles (experimental). Each group was divided into 5 sub-groups according to the test performed. The tests conducted impact strength, transverse strength, indentation hardness (shore D), surface roughness, water sorption and solubility. The size, shape and distribution of nanofiller were estimated using scanning electron microscope (SEM) .The results were statistically analyzed using ANOVA and LSD test. Result: Highly significant increase in impact strength, transverse strength and surface hardness occurred with the incorporation of 1.5% wt Zirconium silicate nanofiller but non-significant increase in impact strength, significant increase in transverse strength and highly significant increase in surface hardness occurred with the incorporation of 1% wt Zrsio4 nanofiller. Non-significant increase in surface roughness with both 1% and 1.5% wt Zrsio4 . Highly significant decrease in water sorption and solubility with 1.5% wt Zrsio4 nanofiller and non-significant decrease in water sorption and solubility with 1% wt Zrsio4 compared with control group. Conclusion: The maximum increase in impact strength, transverse strength, and surface hardness was observed in denture base nano composite containing 1.5% Zrsio4. In addition, highly significant decrease in water sorption and solubility and non-significant increase in surface roughness was also noticed.
Applications of superconductor compounds were considered as modern and important topics, especially these which are exposures to one of the nuclear radiation kinds. So, we gone to investigate the influence of fast neutrons irradiation on electrical and structural characteristics of HgxSb1-xBa2Ca2Cu3O8+δ superconducting compound at (x = 0.7) in ratio. The superconducting specimens were synthesized using solid state technique. Specimens were exposure to the nuclear radiation using fast neutrons with doses (0, 9.06 x1010, 15.3 x 1010 and 18.17 x 1010) n/cm2 respectively. Electrical and X-ray diffraction properties of superconductor specimens before and after irradiation were investigated under standard conditions. Results of X-ray diffraction
... Show MoreIn this work, a ceramic model has obtained from Iraqi bentonite as a base material with limited additions of alumina and silica. The selected material can bear temperatures higher than the bearing temperature of bentonite as it achieved tolerance temperatures (1300°C) based on X-ray diffraction patterns. It was found that the addition of alumina and silica led to the occurrence of basic phases such as mullite, quartz, cordierite and feldspar in percentages that depended on the percentage of addition in the mixture and the firing temperature, which was (1000-1300)°C.
Preparation of superposed thin film (CdTe)1-xSex / ZnS) with concentration of (x= 0.1, 0.3, 0.5) at a temperature of substrate (Ts= 80 0C) by using Thermal Vacuum Evaporation System. The measurement of X-ray diffraction shows that the compounds CdTe, ZnS, (CdTe)1-xSex and (CdTe)1-xSex / ZnS have a polycrystalline structure, the C-V characteristic shows that the capacitance degrease by increasing the concentration (x) in reverse bias, while the I-V characteristic shows the current dark (Id) increase in forward and reverse bias by increasing (x) and the photocurrent (Iph) increase in reverse bias by increasing the concentration (x), the values of photocurrent are greater than from the values of the dark current for all concentrations
... Show MoreZinc Oxide thin film of 2 μm thickness has been grown on glass substrate by pulsed laser deposition technique at substrate temperature of 500 oC under the vacuum pressure of 8×10-2 mbar. The optical properties concerning the absorption, and transmission spectra were studied for the prepared thin film. From the transmission spectra, the optical gap and linear refractive index of the ZnO thin film was determined. The structure of the ZnO thin film was tested with X-Ray diffraction and it was formed to be a polycrystalline with many peaks.
Epoxy resin has many chemical features and mechanical properties, but it has a small elongation at break, low impact strength and crack propagation resistance, i.e. it exhibits a brittle behavior. In the current study, the influence of adding kaolin with variable particle size on the mechanical properties (flexural modulus E, toughness Gc, fracture toughness Kc, hardness HB, and Wear rate WR) of epoxy resin was evaluated. Composites of epoxy with varying concentrations (0, 10, 20, 30, 40 weights %) of kaolin were prepared by hand-out method. The composites showed improved (E, Gc, Kc, HB, and WR) properties with the addition of filler. Also, similar results were observed with the decrease in particle size. In addition, in this study, mult
... Show MoreConfigured binary polymer blends of epoxy and Polyurethane was chosen varying proportions of these materials led to the production of homogeneous mixtures of Althermust Althermust and descent was poured polyurethane models required in the form of 4 mm thick plates
This contribution investigates the effect of the addition of the Hubbard U parameter on the electronic structural and mechanical properties of cubic (C-type) lanthanide sesquioxides (Ln2O3). Calculated Bader's charges confirm the ionic character of Lnsingle bondO bonds in the C-type Ln2O3. Estimated structural parameters (i.e., lattice constants) coincide with analogous experimental values. The calculated band gaps energies at the Ueff of 5 eV for these compounds exhibit a non-metallic character and Ueff of 6.5 eV reproduces the analogous experimental band gap of cerium sesquioxide Ce2O3. We have thoroughly investigated the effect of the O/Ce ratios and the effect of hafnium (Hf) and zirconium (Zr) dopants on the reduction energies of C
... Show MoreBurnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue
... Show MoreInterest has largely centered on the use of plant fibers to reinforce plastics, because these fibers are abundant and cheap. Carrot fibers (Curran) have been extracted from carrot, left over from carrot juice manufacture. The fibers of two sizes fine (50<µm) and coarse (100-150 µm) have been mixed with epoxy in four levels of loading (10, 20, 30, 40 wt %) respectively. Impact test, shore d hardness test and three point bending test of epoxy and carrot fiber-epoxy composites samples have been determined. The impact strength values of samples prepared with fine and coarse fibers increased as compared with pure epoxy sample. Hardness values increased, and the Young’s modulus values decreased with fiber content of both sizes.