Background: An accurate adaptation of the crown to the finish line is essential to minimize cement dissolution and to preserve periodontium in fixed partial denture cases. An accurate adaptation of crown is possible only when preparation details are captured adequately in the impression and transferred to cast. For these reasons, gingival displacement is necessary to capture subgingival preparation details.The aim of the present study is to measure in vivo the horizontal displacement of the gingival sulcus obtained by using three new cordless retraction materials (Magic Foam Cord®, Racegel and Astringent Retraction Paste) in comparison to medicated retraction cord. Materials and method: Thirty-two patients requiring porcelain fused to metal fixed partial denture for replacement of a missing maxillary posterior tooth (either one of thepremolars or the first molar). The patients are randomly divided into four groups of eight patients each according to the type of gingival retraction material used as follows: Group I: Medicated retraction cord (racemic epinephrine hydrochloride 0.3 ± 0.2 mg per inch of cord, #00), Group II: Magic Foam Cord® (expanding polyvinyl siloxane), Group III: Racegel (25% aluminum chloride gel) and Group IV: Astringent Retraction Paste (15% aluminum chloride paste). Three depth orientation grooves were prepared in the buccal and palatal surfaces of a maxillary premolar parallel with the long axis of the tooth, extending from the middle third to the gingival third with the level of the free gingiva using a flat-ended diamond fissure bur. Impression of the gingival sulcus was then made using monophase polyether impression material (Impregum™ Penta™ Soft, 3M ESPE, Germany), before and after gingival retraction with either of the aforementioned gingival retraction materials. The sulcus width, before and after gingival retraction was measured on the master cast (in µm), after its sectioning longitudinally bucco-palatally at the middle of the prepared grooves using a rotary diamond disc. The measurement carried out by using digital microscope (Dino-Lite)at a magnification of 230X. The horizontal gingival displacement (the distance from the end of each prepared groove to the crest of the gingiva) measured by subtracting the gingival sulcus width after retraction from that before retraction. Results: The findings of the present study showed that the highest mean of horizontal gingival displacement is recorded by Group IV (Astringent Retraction Paste) (250.7900 µm), whereas the lowest mean of horizontal gingival displacement is recorded by Group III (Racegel) (78.0988 µm). One-way ANOVA test showed statistically highly significant differences among groups (p< 0.01). Least Significant Difference test (LSD test) was also used to make multiple comparisons among groups and revealed a statistically highly significant difference between each two groups (p< 0.01). Conclusion: The two new gingival retraction pastes (Astringent Retraction Paste and Magic Foam Cord®) could be used for gingival retraction as alternatives to medicated retraction cord. They offer advantages of simplified placement technique and shorter application time with greater gingival retraction. Meanwhile, the use of Racegel alone is not recommended for gingival retraction since it provides the least gingival displacement.
In present work, new tetra-dentate ligand, titled 3,5-bis ((E)-5-Bromo-2-hydroxy benzylidene amino) benzoic acid (H3L), was prepared via an acid-catalyzed condensation process. New four metallic ligand complexes with Co(II), Ni(II), Cu(II) and Zn(II) ions, were also prepared from the refluxing of equivalent moles. Ligand's structure and its complexes; were confirmed by numerous characterization methods, including Ultraviolet-Visible, Infrared, Mass Spectrometer, 1H and 13C Nuclear Magnetic Resonance spectra, atomic absorption, magnetic moments, and molar conductivity measurements. The results of the spectroscopic analyzes proved that the prepared ligand acts as tetradentate bi-ionic ligand and it was bond
... Show MoreTwo Schiff bases, namely, 3-(benzylidene amino) -2-thioxo-6-methyl 2,5-dihydropyrimidine-4(3H)-one (LS])and 3-(benzylidene amino)-6-methyl pyrimidine 4(3H, 5H)-dione(LA)as chelating ligands), were used to prepare some complexes of Cr(III), La(III), and Ce(III)] ions. Standard physico-chemical procedures including metal analysis M%, element microanalysis (C.H.N.S) , magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identify Metal (III) complexes and Schiff bases (LS) and (LA). According to findings, a [Cr(III) complex] showed six coordinated octahedral geometry, while [La(III), and Ce(III) complexes]were structured with coordination number seven. Schiff's bases a
... Show MoreThe aim of this work is the synthesis of new Schiff base derived from PVA and Erythro-ascorbic acid derivative (pentulosono-ɣ-lactone-2,3-enedianisoate) and its metal complexes of biological significance. All synthesized compounds were characterized by Thin layer chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR, 13CNMR and mass spectra. The synthesized Schiff base & its metal complexes were screened for their in vitro antimicrobial activity against five pathogenic bacteria (Escherichia coli, Shigella dysentery,Klebsiellapneumonae,Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast).The biological activity ofall complexes is higher than free Schiff base ligand andf
... Show MoreA simple, sensitive and rapid method was used for the estimate of: Propranolol with Bi (III) to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on a reaction between propranolol and Bi (III) in an aqueous medium to obtain a yellow precipitate. Optimum parameters were studied to increase the sensitivity for the developed method. A linear range for calibration graph was 0.1-25 mmol/L for cell A and 1-40 mmol/L for cell B, and LOD 51.8698 ng/200 µL and 363.0886 ng /200 µL , respectively to cell A and cell B with correlation coefficient (r) 0.9975 for cell A, 0.9966 for cell B, RSD% was lower than 1%, (n = 8) for the
... Show MoreThe objective of this study is to test In Vitro the twenty chemical compounds that contains Schiff base or oxazepine, indoline, imidazolo units in concentrations( 50, 100, 150) mg / dl as antifungal activity, against three pathogenic Candida species that occur in humans. We tested one isolates of
) Candida albicans ,Candida glabrata and Candida krusei). All these species affect human health . The study was carried out in the Laboratory of Public Health , directly of health for the period from May 2016 to April 2017 , Candida spp isolates used in this study were collected from patients admitted at some private c
... Show MoreA new, simple, sensitive and fast developed method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation a burgundy color complex between methyldopa andammonium ceric (IV) nitrate in aqueous medium using long distance chasing photometer NAG-ADF-300-2. The linear range for calibration graph was 0.05-8.3 mmol/L for cell A and 0.1-8.5 mmol/L for cell B, and LOD 952.8000 ng /200 µL for cell A and 3.3348 µg /200 µL for cell B respectively with correlation coefficient (r) 0.9994 for cell A and 0.9991 for cell B, RSD % was lower than 1 % for n=8. The results were compared with classical method UV-Spectrophotometric at λ max=280 n
... Show MoreThe present work includes the preparation and characterization of{Co(II) , Ni(II), Pd(II), Fe(III) , Ru(III),Rh(III), Os(III) , Ir(III) , Pt(IV) and VO(IV)}complexes of a new ligand 4-[(1-phenyl-2,3-dimethyl-3-pyrozoline-5-one)azo]-N,N-dimethylanline (PAD). The product (PAD) was isolated,studies and characterized by phsical measurements,i.e., (FT-IR), (UV) Spectroscopy and elemental analysis(C.H.N). The prepared complexes were identified and their structural geometric were suggested in solid state by using flame atomic absorption, elemental analysis(C.H.N), (FT-IR) and (UV-Vis) Spectroscopy, as well as magnetic susceptibility and conductivity measurements . The study of the nature of the complexes formed in( ethanolic solution) following t
... Show MoreThe current study was to examine the reliability and effectiveness of using most abundant, inexpensive waste in the form of scrap raw zero valent aluminum ZVAI and zero valent iron ZVI for the capture, retard, and removal of one of the most serious and hazardous heavy metals cadmium dissolved in water. Batch tests were conducted to examine contact time (0-250) min, sorbent dose (0.25-1 g ZVAI/100 mL and 2-8 g ZVI/100 mL), initial pH (3-6), pollutant concentration of 50mg/L initially, and speed of agitation (0-250) rpm . Maximum contaminant removal efficiency corresponding to (90 %) for cadmium at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed wer
... Show MoreNew binuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II) Complexes of N2S2 tetradentate or N4S2 hexadentate symmetric Schiff base were prepared by the condensation of butane-1,4-diylbis(2-amino ethylcarbamodithioate) with 3-acetyl pyridine. The complexes having the general formula [M2LCl4] (where L=butane-1,4-diyl bis (2-(z)-1-(pyridine-3-ylethylidene amino))ethyl carbamodithioate, M= Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II)), were prepared by the reaction of the mentioned metal salts and the ligand. The resulting binuclear complexes were characterized by molar conductance, magnetic susceptibility ,infrared and electronic spectral measurements. This study indicated that Mn(II), Ni(II) and Cu(II) complexes have octahedral g
... Show MoreThe reaction of ethylenediamine with [2,4,6-trihydroxyacetophenon] and KOH (Schiff Base) to gives the new tetradentate ligand 2-(1-{2-{1-2,6-Dihydroxy-4-methyl phenyl)ethyliden amino}- ethylimino}-ethyl-benzene- 1,2,5-triol [HCl]. This ligand was reacted with some metal ions (Cu(II), Co(II), Ni(II), Zn(II), and Cd(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(H4L)], where: M= Cu(11), Co(II), Ni(II), Zn(II), and Cd(II). All compounds were characterized by spectroscopic methods [I.R, U.V.-Vis, C.H.N., analysis H.P.L.C, atomic absorption, magnetic susceptibility, (EI-mass for the ligand)], and microanalysis along with conductivity measurements
... Show More