Back ground: During acrylic resin processing, the mold must be separated from the surface of the gypsum to prevent liquid resin from penetrating into the gypsum, and water from the gypsum seeping into the acrylic resin. For many years, tin foil was the most acceptable separating medium, and because it's difficult to apply, a tin-foil substitute is used. In this study, olive oil is used as an alternative to tin foil separating medium for first time, so the aim of the study was to evaluate its effect as a separating medium on some physical properties such as (surface roughness, water sorption and solubility) of acrylic resins denture base comparing it with those processed using tin-foil and tin foil substitute such as (cold mold seal) separating medium. Materials and methods: One hundred forty two acrylic resins samples (124) were prepared falling in two main groups: [heat and cold-cured acrylic denture base resins ], for each group three types of separating medium were used and five tests (10 samples) for each test were carried out , and (4) samples for the chemical composition. Result: From the result obtained, tin foil is one of the most satisfactory separating media in getting the best properties when using it as a separating medium, while, a statistically no-significant difference have been noticed between olive oil and cold-mold seal samples concerning physical and mechanical properties of tested groups. Infrared spectroscopy analysis showed that, no changes were found in the chemical composition of both heat and cold-cured acrylic resins denture base after using olive oil as a separating medium. Conclusion: Lastly, from the results of this study it may be concluded, that olive oil may be used as a substitute for tin foil and cold – mold seal separating medium in processing both heat and cold – cure acrylic resin denture base.
Detection of virulence gene agglutinin-like sequence (ALS) 1 by using molecular technology from clinical samples (
A mathematical model has been introduced to investigate the effect of nuclear reaction constant ( A ), probability of the BEC ground state occupation Ω i, nD is the number density of deuteron (d) and the overall number of nuclei ND on the total nuclear d-d fusion rate (R). Under steady-state of the condensates of Bose-Einstein, the postulate of quantum theory and Bose-Einstein theory were applied to evaluate the total nuclear (d-d) fusion rate trapping in Nickel-metal The total nuclear fusion rate trapping predicts a strong relationship between astrophysical S-factor and masses of Nickel. The reaction rate trapping model was tested on three reaction d(d,p)T, d(d, n)3He and d(d, 4He)Q = 23.8MeV respectively. The reaction rate has described
... Show MoreThe Normalized Difference Vegetation Index (NDVI) is commonly used as a measure of land surface greenness based on the assumption that NDVI value is positively proportional to the amount of green vegetation in an image pixel area. The Normalized Difference Vegetation Index data set of Landsat based on the remote sensing information is used to estimate the area of plant cover in region west of Baghdad during 1990-2001. The results show that in the period of 1990 and 2001 the plant area in region of Baghdad increased from (44760.25) hectare to (75410.67) hectare. The vegetation area increased during the period 1990-2001, and decreases the exposed area.
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.