Preferred Language
Articles
/
jbcd-803
The influence of adding of modified ZrO2-TiO2 nanoparticles on certain physical and mechanical properties of heat polymerized acrylic resin
...Show More Authors

Background: The mechanical and physical properties of Polymethyl methacrylate (PMMA) don’tfulfill the entire ideal requirements of denture base materials. The purpose of this study was to produce new modified polymer nanocomposite (PMMA /ZrO2-TiO2) andassess itsimpact strength, transverse strength and thermal conductivity in comparison to the conventionalheat polymerized acrylic resin. Materials and Methods: Both ZrO2 and TiO2nano fillers were silanized with TMSPM (trimethoxysilyl propyl methacrylate) silane coupling agent before beingdispersed by ultrasonication with the methylmethacrylate (monomer) and mixed with the polymer by means of 2% by weight in (1:1) ratio, 60 specimens were constructed by conventional water bath processing technique and divided into 2 groups: 30 specimens for control group 0% nanofillers and 30 specimens for experimental group 2% of (1:1) ZrO2 and TiO2nano fillers then each group was subdivided into3 sub-groups according to the test to be conducted with 10 specimens for impact, transverse and thermal conductivity test. Results: The interaction of TMSPM silane and the nanofillers was confirmed by FT-IR (Fourier Transform Infra-red spectrophotometer). High significant increase in impact strength (9.838) Kj/m2 and transverse strength (101.705) N/mm2 and non-significant increase in thermal conductivity (0.286) W/m.C° of heat cured acrylic resin of the new polymer nanocomposite were observed. Conclusions: The addition of 2 wt.% of ZrO2:TiO2 by means of 1:1 ratio considerably improved the impact and transverse strength and had a positive effect on the thermal conductivity.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Influence of WS2 Nanoparticles Lubricants on Physical Characteristics of Wrought Aluminium Alloys
...Show More Authors

The present study considers an influence of WS2 nanoparticles lubricants on physical characteristics of wrought Aluminium alloys. It is investigated parameters-performance relationship via tribological pin-on-disc tests, the pin is made of Aluminium alloys and the disk is made of AISI.1045, and the humidity was 70%. Oils with WS2 nanoparticles and without them reveal the loss rate of wear. In this study, the coefficient of friction (CoF) is reduced from 0.27 to 0.22 and the wear rate decreased from 0.128 x 10-6 Nm-1 to 0.107 x 10-6 Nm-1 at a load of 20 N. All worn surfaces were typically three types in wear mechanisms such as adhesive, abrasive, and oxidative wear. In addi

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
The Effect of nano particles of TiO2-Al2O3 on the Mechanical properties of epoxy Hybrid nanocomposites
...Show More Authors

Preparation of epoxy/ TiO2 and epoxy/ Al2O3 nanocomposites is studed and investigated in this paper. The nano composites are processed by different nano fillers concentrations (0, 0.01, 0.02 ,0.03, 0.04 ,0.05 ,0.07 and 0.1 wt%). The particles sized of TiO2,Al2O3 are about 20–50 nm.Epoxy resin and nano composites containing different shape nano fillers of (TiO2:Al2O3 composites),are shear mixing with ratio 1 to 1,with different nano hybrid fillers concentrations( 0.025 ,0.0 5 ,0.15 ,0.2, and 0.25 wt%) to Preparation of epoxy/ TiO2- Al2O3 hybrid composites. The mechanical properties of nanocomposites such as bending ,wearing, and fatigue are investigated as mechanical properties.

View Publication Preview PDF
Crossref
Publication Date
Sun Apr 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study the Effect of Addition of Some Oxides on the Mechanical properties on Unsaturated Polyester Resin Compsites
...Show More Authors

This study included preparation for the unsaturated polyester samples before and after reinforced by Alumina oxide powder and copper oxide powder of different volume fraction amounting (3%,5%,8%). And this reearch included study of some of mechanical properties such as (hardness,compressive and wear).The results showed that increase of the hardness and compressive strength after the reinforced and increase with the volume fraction increase.As the wear test show that the wear rate increases with applied load from the different load(5,10,15)N,and the wear rate decreases with the volume fraction increase.

View Publication Preview PDF
Publication Date
Mon Nov 05 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Effect of Mechanical Surface Treatment on the Tensile Bond Strength of Repaired Acrylic Denture Base Resin Cured by Two Different Techniques
...Show More Authors

Objective: To evaluate and compare the effect of mechanical surface treatment (groove, aluminum oxide particles)
with 45 degree bevel type of joint on tensile bond strength of acrylic specimens repaired by two curing methods
(microwave and water both).
Methodology: Eighty specimens (80) were prepared from pink heat cure acrylic resin. They were divided into two
main groups (40 specimen repaired by microwave energy and 40 specimens repaired by water bath method).Each
group can be divided into four subgroups of ten according to the surface treatment. The control group A was left
intact, group B received no surface treatment, group C and D received surface treatment by (groove, 50 m aluminum
oxide particles). Specimens

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 03 2012
Journal Name
Baghdad Science Journal
Mechanical properties of carbon nanotube reinforced Epoxy Resin composites
...Show More Authors

Overlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 05 2019
Journal Name
Iraqi Journal Of Physics
Study the effect of CaCO3 nanoparticles on physical properties of biopolymer blend
...Show More Authors

Chitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Investigation of Structural, Mechanical, Thermal and Optical Properties of Cu Doped TiO2
...Show More Authors

In this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
The Influence of Alkaline Treatment of Recycled Natural Materials on the Properties of Epoxy Resin Composites
...Show More Authors

Natural fibers and particles reinforced composites are being broadly used due to their bio and specific properties such as low density and easy to machine and production with low cost. In this work, water absorption and mechanical properties such as tensile strength, flexural strength and impact strength of recycled jute fibers reinforced epoxy resin were enhanced by treating these fibers with alkaline solution. The recycled jute fibers were treated with different concentration of (NaOH) solution at (25 0C) for a period of (24) hours. From the obtained results, it was found that all these properties are improved when fibers treated with (7.5wt% NaOH) related to untreated fibers. Conversely, the mentioned properties of composit

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 07 2018
Journal Name
Applied Physics A
Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite
...Show More Authors

View Publication
Crossref (45)
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
The Influence of CeO2 Concentration on Some Physical Properties of Y2O3 Thin Films
...Show More Authors

       Thin films of pure yttrium oxide (Y2O3) and doped with cerium oxide (CeO2) were prepared by the chemical spray pyrolysis(CSP)method. The structural, optical and electrical properties of the prepared films were investigated. The analysis of X-ray diffraction (XRD) thin films revealed that the undoped and doped Y2O3  were amorphous with a broad hump around 27o and narrow humps around 48o and 62o for all samples. Except for the Y2O3:6wt.%CeO2 thin film, all had signal preferential orientation along the (100) plane at 2θ=12.71o which belongs to CeO2, Field emission scanning electron mic

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref