Background The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etched with 15N H2SO4 and 30% H2O2, Surfaces were characterized by scanning electron microscope (SEM), Xray diffraction (XRD), atomic force microscope (AFM), thickness measurement for the invitro experiments. While for invivo part tibia of 5 white new Zealand rabbits were chosen as implantation sites. The tibia of each rabbit received two screws. Biomechanical test was performed to understand the bone-implant interface, after two weeks healing periods. Implants from 4animals were tested for the torque required to remove the implant from the bone and the other one animal was prepared for histological examination. Results and Conclusion: For in vitro results, scanning electron microscope showed that the chemical etching of Ti substrate becomes highly porous and has surface consisting of nanosized pits. Removal torque means value after 2 weeks of implantation mentioned that, there was a gradual increase in the removal torque mean values as a follow (M±SD): 12.625(N.cm) ± 0.517, 30.500(N.cm) ± 4.071for machined surface(X), nano chemically etched (X1) respectively. In addition, the histological analysis showed improved quality of bone in response to the nano modified screws, that the chemically treated implants shows trabeculated thread.
Background: The treatment of dental tissues proceeding to adhesive procedures is a crucial step in the bonding protocol and decides the clinical success ofrestorations. This study was conducted in vitro, with the aim of evaluating thenanoleakage on the interface between the adhesive system and the dentine treated by five surface modalities using scanning electron microscopy and energydispersiveX-ray spectrometry. Materials and methods: Twenty five extracted premolars teeth were selected in the study. Standardized class V cavities were prepared on the buccal and lingual surfaces then the teeth divided into five main groups of (5 teeth in each group n=10) according to the type of dentine surface treatment that was used: Group (A): dentine was
... Show MoreBackground: The treatment of dental tissues proceeding to adhesive procedures is a crucial step in the bonding protocol and decides the clinical success ofrestorations. This study was conducted in vitro, with the aim of evaluating thenanoleakage on the interface between the adhesive system and the dentine treated by five surface modalities using scanning electron microscopy and energydispersiveX-ray spectrometry. Materials and methods: Twenty five extracted premolars teeth were selected in the study. Standardized class V cavities were prepared on the buccal and lingual surfaces then the teeth divided into five main groups of (5 teeth in each group n=10) according to the type of dentine surface treatment that was used: Group (A): dentine was
... Show MoreRoughness length is one of the key variables in micrometeorological studies and environmental studies in regards to describing development of cities and urban environments. By utilizing the three dimensions ultrasonic anemometer installed at Mustansiriyah university, we determined the rate of the height of the rough elements (trees, buildings and bridges) to the surrounding area of the university for a radius of 1 km. After this, we calculated the zero-plane displacement length of eight sections and calculated the length of surface roughness. The results proved that the ranges of the variables above are ZH (9.2-13.8) m, Zd (4.3-8.1) m and Zo (0.24-0.48) m.
Background: Bowel preparation prior to
colonic surgery usually includes antibiotic
therapy together with mechanical bowel
preparation which may cause discomfort to the
patients, prolonged hospitalization and water
& electrolyte imbalance.
Objective: to assess whether elective colon
and rectal surgery may be safely performed
without preoperative mechanical bowel
preparation.
Method: the study includes all patients who
had elective large bowel resection at Medical
City – Baghdad Teaching Hospital between
Feb, 2007 to Jan, 2010. Emergency operations
were not included. The patients were randomly
assigned to the 2 study groups (with or without
mechanical bowel preparation.
Results: A to
Ab – initio density function theory (DFT) calculations coupled with Large Unit Cell (LUC) method were carried out to evaluate the electronic structure properties of III-V zinc blend (GaAs). The nano – scale that have dimension (1.56-2.04)nm. The Gaussian 03 computational packages has been employed through out this study to compute the electronic properties include lattice constant, energy gap, valence and conduction band width, total energy, cohesive energy and density of state etc. Results show that the total energy and energy gap are decreasing with increase the size of nano crystal . Results revealed that electronic properties converge to some limit as the size of LUC increase .
A thin film of (SnSe) and SnSe:Cu with various Cu ratio (0,3,5 and 7)% have been prepared by thermal evaporation technique with thickness 400±20 nm on glass substrate at (R.T). The effect of Cu dopants concentration on the structural, morphological, optical and electrical properties of (SnSe) Nano crystalline thin films was explored by using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), UV–Vis absorption spectroscopy and Hall Effect measurement respectively. X-ray diffraction analysis reveal the polycrystalline nature of the all films deposited with orthorhombic structure which possess a preferred orientation along the (111) plane. The crystalline sizes o
... Show MoreOsteoarthritis is the most prevalent arthritic disease and a leading cause of disability. The pathogenesis of osteoarthritis involves multiple etiologies, including variable degree of synovial inflammation. Metformin and pioglitazone could potentially reduce the levels and activity of inflammatory mediators. This may consider as a new therapeutic approach added to the current used drugs in an attempt to decrease the pain, inflammation, and improve daily activity and quality of life in patients with knee osteoarthritis.
This study designed to evaluate the clinical utility of using metformin or pioglitazone as anti-inflammatory agents in combination with non-steroidal anti-inflammatory drugs (NSAID) of selective type of cyclooxygen
... Show More