Background The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etched with 15N H2SO4 and 30% H2O2, Surfaces were characterized by scanning electron microscope (SEM), Xray diffraction (XRD), atomic force microscope (AFM), thickness measurement for the invitro experiments. While for invivo part tibia of 5 white new Zealand rabbits were chosen as implantation sites. The tibia of each rabbit received two screws. Biomechanical test was performed to understand the bone-implant interface, after two weeks healing periods. Implants from 4animals were tested for the torque required to remove the implant from the bone and the other one animal was prepared for histological examination. Results and Conclusion: For in vitro results, scanning electron microscope showed that the chemical etching of Ti substrate becomes highly porous and has surface consisting of nanosized pits. Removal torque means value after 2 weeks of implantation mentioned that, there was a gradual increase in the removal torque mean values as a follow (M±SD): 12.625(N.cm) ± 0.517, 30.500(N.cm) ± 4.071for machined surface(X), nano chemically etched (X1) respectively. In addition, the histological analysis showed improved quality of bone in response to the nano modified screws, that the chemically treated implants shows trabeculated thread.
This study aimed to explore the manufacture of high-fat pellets for obesity induction diets in male Wistar rats and determined its effect on lipid profiles and body mass index. It was an experimental laboratory method with a post-test randomized control group. Formulation of high-fat pellets (HFD) and physico-chemical characteristics of pellets were conducted in September 2019. This study used about 28 male Wistar white rats, two months old, and 150-200 g body weight. Rats were acclimatized for seven days, then divided into four groups: 7 rats were given a standard feed of Confeed PARS CP594 (P0), and three groups (P1, P2, P3) were given high-fat feed (HFD FII) 30 g/head/day. The result showed that the mean fat content of Formula II pell
... Show MoreThe density-based spatial clustering for applications with noise (DBSCAN) is one of the most popular applications of clustering in data mining, and it is used to identify useful patterns and interesting distributions in the underlying data. Aggregation methods for classifying nonlinear aggregated data. In particular, DNA methylations, gene expression. That show the differentially skewed by distance sites and grouped nonlinearly by cancer daisies and the change Situations for gene excretion on it. Under these conditions, DBSCAN is expected to have a desirable clustering feature i that can be used to show the results of the changes. This research reviews the DBSCAN and compares its performance with other algorithms, such as the tradit
... Show MoreIn this Study, isolate and identification two types of algae Scenedesmus acuminatus (Lag.) Chodat belonging to Division of green –algae and Nostoc sp. Of the belong to Division of cyanobacteria from fountain pool at the University of Al- Mustansiriya. Use culture medium Chu- 10 for growth of algae on batch culture in the laboratory conditions (25 ˚ c ±2 and light intensity 200 μE/m²/sec the light:dark regime was used 16:8 hrs). Harvested culture after fourteen days of age farm. Use methanol 95% to extract active compound from raw dry biomass, Tested the effectiveness of the efficiency of the cell extract toward the cell line (human larynx cancer) Hep-2 from biotechnology center at the University of Alnahrain university and differen
... Show MoreEffect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated
In this study, some attenuation parameters of gamma shields were studied. This shields consisting of composite materials of Unsaturated polyester as a base material and Nano iron oxide (Fe2O3) and, micro iron (Fe) as reinforcement materials at different percentages (1, 3,5,7and 9)wt%, and with different thickness (1, 1.5, 2, 2.5, 3, 3.5and 4) cm. The results showed that the use of nanoparticles is better than the microparticales in the field of radiation shielding. It has been shown that the values of attenuation parameters of gamma it bitter in the case of nanoparticles than case of the use of micro material.
In this work silicon solar cell has been used with semicircular grooves to improve its efficiency by reducing reflection of rays and increasing optical path through the cell. Software program for optical design (zemax) has been used by ray tracing mode to evaluate prototype efficiency when using detector beneath the cell. The prototype has aspect ratio (A.R=0.2) which is the best efficiency at incident angle (ϴ=0ͦ) and the best acceptance angle (ϴ=50ͦ).
The health of Roadway pavement surface is considered as one of the major issues for safe driving. Pavement surface condition is usually referred to micro and macro textures which enhances the friction between the pavement surface and vehicular tires, while it provides a proper drainage for heavy rainfall water. Measurement of the surface texture is not yet standardized, and many different techniques are implemented by various road agencies around the world based on the availability of equipment’s, skilled technicians’ and funds. An attempt has been made in this investigation to model the surface macro texture measured from sand patch method (SPM), and the surface micro texture measured from out flow time (OFT) and British pendul
... Show More