Background: Coated archwires have been introduced to improve esthetics during orthodontic treatment. Theaim of the present study was to evaluate and compare the load–deflection characteristics and force levels of six brands of coated nickel titanium orthodontic archwires using palatal and gingival deflection. Materials and methods: Ten round wires (0.016 inch) and ten rectangular wires (0.019x0.025 inch) were obtained from each of six brands (G&H, Opal, Ortho Technology, Dany, Hubit and Astar Companies). The load-deflection properties of these archwires were evaluated by the modified bending test usinga readymade dental arch model in both palatal and gingival directions at 37°C temperature using a universal material testing machine. Forces generated at maximum loading of 2mm and at unloading of 1.5mm were measured. Results: All the wires showed hysteresis and significant differences in their load deflection curves, but these differences were more evident in round wires than in rectangular wires where G&H wires showed the widest loading- unloading deflection curves. The maximum loading force of round wires in gingival deflection were higher than by palatal deflection. The force decline during unloading (plateau gap) ranged between 18 to 34% for round wires and 17 to 37% for rectangular wires. Conclusion: Coated epoxy wires (G&H, Opal, Astar and Ortho Technology) produced lower forces compared to polymer (Dany) and Teflon (Hubit) coated round and rectangular archwire.
The effect of the tensor term in the Skyrme interaction has been estimated in calculating the static and dynamic nuclear properties in sd and fp-shell model spaces nuclei. The nuclear shell gaps have been studied with different Skyrme parameterizations; Skxta and Skxtb with tensor interaction, SkX, SkM, and SLy4 without tensor interaction, and Skxcsb with consideration of the effect of charge symmetry breaking. We have examined the stability of N = 28 for 42Si and 48Ca. The results showed that the disappearance of the magicity occurs in the shell closure of 42Si. Furthermore, excitation energy, quadrupole deformation, neutron separation energy, pairing energy, and density profile have also been calculated. Quadrupole deformation indicates a
... Show MoreBackground: The immune system of the oral cavity suffers alterations due to fixed orthodontic treatment which act as potent stimulus for oral secretory immunity. The aims of this study are to estimate the effect of fixed orthodontic appliance on the level of salivary sIgA at different time intervals, and to verify the gender difference. Materials and method: The patient's history, clinical examination, and fixed orthodontic appliances were placed for 30 Iraqi orthodontic adult patients had class II division 1 and/ or class I malocclusion (15 males and 15 females) aged 18-25 years old. The unstimulated whole saliva was collected from each sample immediately before wearing fixed appliance (control group T0 as base line), and after 2 weeks (T1
... Show MoreTo investigate the efficacy of polyether‐ether‐ketone (PEEK) wire as a fixed orthodontic retainer, by comparing its performance to other retainer wires and optimizing its adhesion to composite bonding materials.
Retainer wires of 15 mm segments were used, PEEK wires were prepared in cylindrical form with 0.8 mm diameter, and had two surface treatments namely air‐abrasion and conditioning with adhesive system. Three different metallic retainer wires were used for comparison and three tests were performed; two tests measured debonding force and associated wire deflec
The presented work shows a preliminary analytic method for estimation of load and pressure distributions on low speed wings with flow separation and wake rollup phenomena’s. A higher order vortex panel method is coupled with the numerical lifting line theory by means of iterative procedure including models of separation and wake rollup. The computer programs are written in FORTRAN which are stable and efficient.
The capability of the present method is investigated through a number of test cases with different types of wing sections (NACA 0012 and GA(W)-1) for different aspect ratios and angles of attack, the results include the lift and drag curves, lift and pressure distributions along the wing s
... Show MoreReducing a structure’s self-weight is the main goal and a major challenge for most civil constructions, especially in tall buildings and earthquake-affected buildings. One of the most adopted techniques to reduce the self-weight of concrete structures is applying voids in certain positions through the structure, just like a voided slab or BubbleDeck slab. This research aims to study, experimentally and theoretically, the structural behavior of BubbleDeck reinforced concrete slabs under the effect of harmonic load. Tow-way BubbleDeck slab of 2500mm×2500m×200mm dimensions and uniformly distributed bubbles of 120mm diameter and 160mm spacing c/c was tested experimentally under the effect of harmonic load. Numerical analysis was als
... Show MoreRock engineers widely use the uniaxial compressive strength (UCS) of rocks in designing
surface and underground structures. The procedure for measuring this rock strength has been
standardized by both the International Society for Rock Mechanics (ISRM) and American Society
for Testing and Materials (ASTM), Akram and Bakar(2007).
In this paper, an experimental study was performed to correlate of Point Load Index ( Is(50))
and Pulse Wave Velocity (Vp) to the Unconfined Compressive Strength (UCS) of Rocks. The effect
of several parameters was studied. Point load test, Unconfined Compressive Strength (UCS) and
Pulse Wave Velocity (Vp) were used for testing several rock samples with different diameters.
The predicted e
This work presents an innovative approach to enhancing the performance of concrete with reclaimed asphalt pavement (RAP) aggregates using titanium dioxide (TiO2) nanoparticles. Traditional limestone coarse aggregates were partially replaced with 30% and 50% RAP aggregates; a subset of mixtures containing RAP aggregates was treated with TiO2 nanoparticles. The rheological, mechanical, and long-term properties of concrete, along with changes in its chemical composition following the addition of RAP and TiO2, were evaluated. Results revealed that using 30% and 50% RAP in concrete mixtures reduced their compressive strength by 18% and 27%, respectively. However, using TiO2 in those mixtures enhanced their compressive strength by 8.7% an
... Show More