Background: One common undesirable side effect of orthodontic treatment with fixed appliances is the development of incipient caries lesions around brackets, particularly in patients with poor oral hygiene. Different methods have been used to prevent demineralization; the recent effort to improve the resistance against the demineralization is by the application of lasers. Materials and method: Thirty human premolars extracted for orthodontic purposes were used to test the effect of two energy level of ER-YAG laser on enamel resistance to demineralization. The brackets were bonded on the teeth and all the labial surface excluding 2 mm area gingival to the brackets were painted with acid resistance varnish. Three groups were generated. The first group was the control group (A), with no treatment was performed. In group II (B)and groups III (C); teeth were irradiated by ER-YAG laser of 200, 60 mj energy respectively. All the teeth were individually subjected to acid challenge cycle for 30 days. After debonding longitudinal sections were taken and examined under stereomicroscope. The enamel demineralization evaluation was done by taking the average of three depths at the centre of the artificial lesion. Also the enamel surface was classified by an experienced investigator according to acid etch pattern. Comparisons of the average depth values of the groups were performed with ANOVA and LSD tests. The statistical significance level was set at p ≤ 0.05. Results: The results revealed that average lesion depth was significantly deeper at the control group than the laser groups, and its significantly deeper in group (B) 200 mj than in group (C) 60 mj, enamel surfaces showed deeper pits and craters than in control group. Conclusions: the decrease in artificial caries lesion depth associated with use of the two laser energy level support the ER-YAG laser as a tool to increase enamel resistance to demineralization and white spot lesion prevention. Key words: Demineralization, ER-YAG, laser.
The variation in wing morphological features was investigated using geometric morphometric technique of the Sand Fly from two Iraqi provinces Babylon and Diyala . We distributed eleven landmarks on the wings of Sand Fly species. By using the centroid size and shape together, all species were clearly distinguished. It is clear from these results that the wing analysis is an essential method for future geometric morphometry studies to distinguish the species of Sand Flies in Iraq.
The ring modulator described in part I of this paper is designed here for two operating wavelengths 1550nm and 1310nm. For each wavelength, three structures are designed corresponding to three values of polymer slot widths (40, 50 and 60nm). The performance of these modulators are simulated using COMSOL software (version 4.3b) and the results are discussed and compared with theoretical predictions. The performance of intensity modulation/direct detection short range and long rang optical communication systems incorporating the designed modulators is simulated for 40 and 100Gb/s data rates using Optisystem software (version 12). The results reveal that an average energy per bit as low as 0.05fJ can be obtained when the 1550nm modulator is d
... Show MoreCoupling reaction of 2-amino benzoic acid with 8-hydroxy quinoline gave bidentate azo ligand. The prepared ligand has been identified by Microelemental Analysis,1HNMR,FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (ZnII,CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]. The prepared complexes have been characterized by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration ra
... Show MoreHybrid architecture of ZnO nanorods/graphene oxide ZnO-NRs@GO synthesized by electrostatic self-assembly methods. The morphological, optical and luminescence characteristics of ZnO-NRs@GO and ZnO-NRs thin films have been described by FESEM, TEM, HRTEM, and AFM, which refers to graphene oxide have been coated ZnO-NRs with five layers. Here we synthesis ZnO-NRs@GO by simple, cheap and environmentally friendly method, which made it favorable for huge -scale preparation in many applications such as photocatalyst. ZnO-NRs@GO was applied as a photocatalyst Rodamin 6 G (R6G) dye from water using 532 nm diode laser-induced photocatalytic process. Overall degradation of R6G/ ZnO-NRs@GO was achieved after 90 minutes of laser irradiation while it ne
... Show MoreThe beet armyworm (BAW), Spodoptera exigua (Lepidoptera: Noctuidae) is a highly destructive pest of vegetables and field crops. Management of beet armyworm primarily relies on synthetic pesticides, which is threatening the beneficial community and environment. Most importantly, the BAW developed resistance to synthetic pesticides with making it difficult to manage. Therefore, alternative and environment-friendly pest management tactics are urgently required. The use of pesticidal plant extracts provides an effective way for a sustainable pest management program. To evaluate the use of pesticidal plant extracts against BAW, we selected six plant species (Lantana camara, Aloe vera, Azadirachta indica, Cymbopogon citratus, Nicotiana tabacum ,
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreThis study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c
... Show MoreBackground: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized
... Show More