Background: Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. Growth factors released in the traumatized area promote cell migration into the wound area (chemotaxis), stimulate the growth of epithelial cells and fibroblasts (mitogenesis), initiate the formulation of new blood vessels (angiogenesis), and stimulate matrix formation and remodeling of the affected region. One of factors that effects on wound healing is a sex hormones and one of these hormones is an estrogen hormone. A wide range of cutaneous cell types (eg, fibroblast, endothelial, epithelial, and inflammatory) expressed estrogen receptors, indicating potential estrogen responsiveness. Materials and methods: Thirty two female New Zealand rabbits were used in this study. All animals were ovariectomized, and incisional wounds were done on the right (experimental for estrogen hormone application) and left (control) sides of face for each animal, the control side was left to heal normally. Histological assessment regarding the count of inflammatory cells was performed for healing intervals (3, 7, 10, 14 days). Results: Topical estrogen hormone application revealed enhancement of wound healing by reducing wound size and stimulating matrix deposition in comparison to control. Conclusion: Topical estrogen cream application results in significant progress of cutaneous wound healing, leaving no scar or crust formation and can minimize the probable wound complications. Key words: Estrogen hormone, wound healing.
Research includes evaluation of projects implemented and which entered into trial operation period in accordance with the evaluation criteria and of (cost, quality and time) to determine the size deviations gap for the sample of projects during the years of assessment (2011-2012-2013-2014) of each of the three evaluation criteria, and then followed by a calculation the size of the overall gap to the problem based on the research problem to determine deviations from the specific implementation of each project by answering several questions to answer turns out the reasons for these deviations occur.
The importance of research Focus on the evaluation of received projects from contractors executing the projec
... Show MoreThe aim of the current study was to investigate the impact of workplace stress on employee engagement within Iraqi universities through the mediator role of leadership style. Work-related stress and non-work-related stress were identified as representing workplace stress. Employee engagement has been measured through three types: social engagement, affective engagement, and intellectual engagement. Two types of leadership styles have been tested: directive and participative leadership. the structural equation Modeling was used to test the study model. A sample of 245 employees in Iraqi universities, including university professors, was targeted. Only 214 respondents participated in the survey. The results showed that non-work-relate
... Show MoreThe aim of this research is to find out the influence of Daniel's model on the skills of the twenty-first century among the students of the scientific-fifth grade at the secondary and preparatory government morning schools for the academic year 2022- 2023. Two groups were chosen out of five groups for the fifth-scientific grade, one of which represents the experimental group that is taught by the Daniel model, and the other is the control group that is taught in the traditional method. The equivalence of the two research groups was verified with a set of variables. As for the research tool, a scale was developed by the researchers for the skills of the twenty-first century, in which they adopted the framework of the Partnership Organizat
... Show MoreThis research study the effect of Titanium dioxide on the tensile properties of
Polystyrene (PS) and Polycarbonate (PC) polymers. The stress – strain curve for pure PS
and pure PC, shows that Young modulus for PS is higher than Young modulus for PC,
because PS have higher ultimate strength than PC.
The addition of TiO2 to PS and PC will reduce the Young modulus and ultimate stress,
because the TiO2 particles will reduces or freeze the orientation of these molecular chain
and reduced the toughness of PC, while when the TiO2 were added to PS, the value of
toughness will be stabilized because TiO2 particles make these chains interlocked and the
mobility of the chains will be restrict.
In this paper, SiO2 nanoparticles thin films were synthesised at different PH values of solution by sol gel method at fixed temperature (25oC) and molar ratio (R =H2O/precursor) of (Tetra Ethyl Ortho Silicate) TEOS as precursor at (R=1). The structure and optical properties of the thin films have been investigated. All thin films were tested by using X-RAY diffraction. All X-RAY spectrum can be indexed as monoclinic structure with strong crystalline (110) plane. The morphological properties of the prepared films were studied by SEM. The results indicate that all films are in nano scale and the particle size around (19-62) nm .The size of silica particles increases with increasing PH value of solution where both the rate of hydrolysis and
... Show MoreThe first studies on shocks and vibrations were carried out at the beginning of the 1930s to improve the behavior of buildings during earthquakes. Vibration tests on aircraft were developed from 1940 to verify the resistance of parts and equipments prior to their first use. Flutter is a well-known example of dynamic aero elasticity, where when oscillation of structure interacted with unsteady aerodynamic forces the flutter will occur. Vibration on any structure without damping means that self-harmonic oscillation will occur, and in most cases the oscillation may start to increase until structural failure. This behavior is very similar to resonance phenomena if only the oscillation is being studied as a vibration case. In vibration suppre
... Show More