Background: Poly (methylmethacrylate) is the most widely used material in denture fabrication. The characteristics of acrylic resin which support microorganism development can threaten the oral health of denture users. This study was assigned to prepareand incorporate Ag-Zn zeolite powder into heat cured denture base material as antimicrobial material and to investigate its effect on some properties of heat cured acrylic denture base materials. Materials and methods: Sliver –zinc zeolite was prepared by ion exchange method and characterized then incorporated into poly (methylmethacrylate) powder in0.5% by weight. Specimens were constructed and divided into 6 groups according to the using tests; each group was subdivided into 2 groups. The tests conducted in this study were: impact strength test, transverse strength test, surface hardness test, surface roughness test, water sorption test, water solubility test and color change measurement after addition. The results were statistically analyzed by t-test at p value≤ 0.05. Results: Characterization methods results showed the incorporation of sliver and zinc ion without change of zeolite structure framework. A non-significant effect resulted from the addition of 0.5% sliver –zinc zeolite on the impact strength, transverse strength, surface hardness, surface roughness and cause no change in color of heat cure denture base. Also a highly significant decrease in water sorption and a significant increase of water solubility were observed. Conclusion: Preparation of sliver-zinc zeolite could be performed successfully and the addition of 0.5% of antimicrobial sliver-zinc zeolite into heat cure acrylic had a non significant effect on the impact strength, transverse strength, surface hardness, surface roughness and did not change the color, also there was a significant decrease in water sorption and increase in water solubility of acrylic resin. Key words: Denture stomatitis, Antimicrobial agent, Ag- Zn Zeolite.
The research discussed the possibility of adsorption of Brilliant Blue Dye (BBD) from wastewater using 13X zeolite adsorbent, which is considered a byproduct of the production process of potassium carbonate from Iraqi potash raw materials. The 13X zeolite adsorbent was prepared and characterized by X-ray diffraction that showed a clear match with the standard 13X zeolite. The crystallinity rate was 82.15% and the crystal zeolite size was 5.29 nm. The surface area and pore volume of the obtained 13X zeolite were estimated. The prepared 13X zeolite showed the ability to remove BBD contaminant from wastewater at concentrations 5 to 50 ppm and the removal reached 96.60% at the lower pollutant concentration. Adsorption measurements versus tim
... Show MoreThis paper addresses the substrate temperature effect on the structure, morphological and optical properties of copper oxide (CuO) thin films deposited by pulsed laser deposition (PLD) method on sapphire substrate of 150nm thickness. The films deposited at two different substrate temperatures (473 and 673)K. The atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and UV-VIS transmission spectroscopy were employed to characterize the size, morphology, crystalline structure and optical properties of the prepared thin films. The surface characteristics were studied by using AFM. It is found that as the substrate temperature increases, the grain size increased but the surface roughness decreased. The FTIR spec
... Show MoreObjective: the aim of this study is to invest age and determine the effect of using (2) packing
technique (conventional and new tension technique) on hardness of (2) types of heat cure acrylic
resin which are (Ivoclar and Qual dental type).
Methodology : this study was intended the using of two types of heat cure acrylic (IVoclar and
Qual dental type) which are used in construction of complete denture which packed in two different
packing technique (conventional and new tension technique) and accomplished by using a total of
(40) specimens in diameter of ( 2mm thickness, 2 cm length and 1 cm width) . This specimens were
sectioned and subdivide into (4) group each (10) specimens for one group , then signed as (A, Al B
Resilient polymeric materials such as silicone elastomers are currently used for maxillofacial prostheses construction but the strength of these materials and their clinical performance need to be optimized with the addition of reinforcing fillers. This study investigates the effect of zirconia nanopowder addition on tear strength, tensile strength, elongation at break, Shore A hardness, surface roughness and cytotoxicity of VST-50 maxillofacial silicone. Silicone base was mixed with different amounts (1%, 2% and 3%) of zirconia nanopowder using a vacuum mixer. Silicone without filler was used as control for comparison. Scanning Electron Microscopy and Atomic Force Microscopy were utilized to assess the efficiency of high-shear vacuum mixin
... Show More An experimental and computational study is conducted to analyze the thermal performance of heat sinks and to pick up more profound information in this imperative field in the electronic cooling. One important approach to improve the heat transfer on the air-side of the heat exchanger is to adjust the fin geometry. Experiments are conducted to explore the impact of the changing of diverse operational and geometrical parameters on the heat sink thermal
performance. The working fluid used is air. Operational parameters includes: air Reynolds number (from 23597 to 3848.9) and heat flux (from 3954 to 38357 W/m
2 ). Conformational parameters includes: change the direction of air flow and the area of conduct
In this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec
Iron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
c
Different parameters of double pipe helical coil were investigation experimentally. Four coils were used; three with a curvature ratio (0.037, 0.031, and 0.028) and 11mm diameter of the inner tube while the fourth with 0.033 curvature ratio and 13 mm diameter of the inner tube. The hot water flow in the inner tube whereas the cold water flows in the annulus. The inlet temperatures of hot and cold water are 50 0C and 18 0C respectively. The inner mass flow rate ranges from 0.0167 to 0.0583 kg/s. The results show the Nusselt number increase with increase curvature ratio. The Nusselt number of the coil with 0.037 curvature ratio increases by approximately 12.3 % as compare with 0.028 curvature ratio. The results also r
... Show MoreThe acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe
... Show More