ABSTRACT Background: One of the major problems of all ceramic restorations is their probable fracture against the occlusal forces. The objective of this in vitro study was to evaluate the effect of two gingival finishing lines (90°shoulder and deep chamfer) on the fracture resistance of full contour CAD/CAM and heat press all-ceramic crowns. Materials and Methods: Thirty two maxillary first premolars were prepared to receive full contour CAD/CAM (zolid) and heat press (Cergo Kiss) ceramic crowns using a special paralleling device (Parallel-A-Prep). The teeth were divided into four groups according to the type of finishing line prepared. Each crown was cemented to its corresponding tooth using self-etch, self-adhesive dual cure resin cement. Following storage for 1 week in distilled water at room temperature, teeth were subjected to thermal cycling. Fracture resistance was determined using a universal testing machine, and the samples were investigated microscopically from the point of view of the origin of the failure. Statistical analysis was carried out using the one-way ANOVA and Student’s t-tests. Results: The mean values of fracture resistance for CAD/CAM group showed 1367.250+178.967 N for 90°shoulder margins and 1109.250+252.455 N for the deep chamfer margins. ANOVA test results revealed high significance between and within the groups. The mean values of fracture resistance for heat press group were 548.562+272.471 N for 90°shoulder margins and 247.912+96.995 N for the deep chamfer margins expressing statistical significance. Conclusions: The results of this study pointed to a relationship between the design of the cervical finishing line and the fracture strength of the full CAD/CAM crowns and the full heat press ceramic crowns. Both 90° shoulder and deep chamfer finishing lines are suitable for zolid crowns while the 90° shoulder is more suitable for the Cergo Kiss crowns than the deep chamfer preparation. Key words: Full contour, All-ceramic crowns, CAD/CAM, Heat press, Fracture strength.
Objective(s): Ramadan is the Holy month of the Muslims, where they are required to abstain from food and drinks
from dawn till the beginning of night. This study was conducted in Ramadan to investigate the effect of fasting on
hematological incidences, lipid profile, renal and liver function tests among healthy adult males.
Methodology: The present study was carried out in Ramadan – 1431 of Higira (August-September 2010). The study
sample was 56 healthy adult males. Five samples of blood were taken at five intervals (Before, at day 1, 15, 28 and
after Ramadan). Estimation was done for hematological markers, (hemoglobin, white blood cells count, platelet
count); renal function tests (blood urea, serum uric acid, serum
This paper investigates the effect of magnetohydrodynamic (MHD) of an incompressible generalized burgers’ fluid including a gradient constant pressure and an exponentially accelerate plate where no slip hypothesis between the burgers’ fluid and an exponential plate is no longer valid. The constitutive relationship can establish of the fluid model process by fractional calculus, by using Laplace and Finite Fourier sine transforms. We obtain a solution for shear stress and velocity distribution. Furthermore, 3D figures are drawn to exhibit the effect of magneto hydrodynamic and different parameters for the velocity distribution.
Experimental study on the effect of cylindrical hollow cathode, working pressure and magnetic field on spatial glow distribution and the characteristics of plasma produced by dc discharge in Argon gas, were investigated by image analyses for the plume within the plasma. It was found that the emission intensity appears as a periodic structure with many peaks appeared between the electrodes. Increasing the pressure leads to increase the number of intensity peaks finally converted to continuous form at high pressure, especially with applied of magnetic field, i.e. the plasma is more stable with the presence of magnetic field. The emission intensity study of plasma showed that the intensity has a maximum value at 1.07 mbar pressure and decre
... Show MoreFrictional heat is generated when the clutch starts to engag. As a result of this operation the surface temperature is increased rapidly due to the difference in speed between the driving and driven parts. The influence of the thickness of frictional facing on the distribution of the contact pressure of the multi-disc clutches has been investigated using a numerical approach (the finite element method). The analysis of contact problem has been carried out for a multiple disc dry clutch (piston, clutch discs, separators and pressure plate). The results present the distribution of the contact pressure on all tShe surfaces of friction discs that existed in the friction clutch system. Axisymmetric finite element models have been developed to ac
... Show MoreAccurate description of thermodynamic, structural, and electronic properties for bulk and surfaces of ceria (CeO2) necessitates the inclusion of the Hubbard parameter (U) in the density functional theory (DFT) calculations to precisely account for the strongly correlated 4f electrons. Such treatment is a daunting task when attempting to draw a potential energy surface for CeO2-catalyzed reaction. This is due to the inconsistent change in thermo-kinetics parameters of the reaction in reference to the variation in the U values. As an illustrative example, we investigate herein the discrepancy in activation and reaction energies for steps underlying the partial and full hydrogenation of acetylene over the CeO2(111) surface. Overall, we find th
... Show MoreThe influence of fear on the dynamics of harvested prey-predator model with intra-specific competition is suggested and studied, where the fear effect from the predation causes decreases of growth rate of prey. We suppose that the predator attacks the prey under the Holling type IV functional response. he existence of the solution is investigated and the bounded-ness of the solution is studied too. In addition, the dynamical behavior of the system is established locally and globally. Furthermore, the persistence conditions are investigated. Finally, numerical analysis of the system is carried out.
Effect of nano and micro SiO2 particles with different weight percent (2,4,6,8 and 10) %wt on the Interlaminar fracture toughness (GIc) of 16-plies of woven roving glass fiber /epoxy composites prepared by hand lay – up technique were investigated. The specimens were tested using DCB test (mode I).
Area method was used to compute the interlaminar fracture toughness. The results show that, GIc would increase with the increasing in the filler content, the main failure in microcomposites and nanocomposites was delamination in the layers, the delamination reduced with increasing in the filler content.