Background: In recent years, the immediate loading of dental implants has become more accepted as a standard protocol for the treatment of the edentulous area. Success in implant dentistry depends on several parameters that may improve phenomenon of osseointegration and new bone formation in close contact with the implant. The aim of study was to evaluate the effect of strontium chloride coating of screw shape commercially pure titanium dental implant osseointegration at bone - implant interface by histomorphometric analysis and compare with hydroxyapatite coating at 2 time periods (2 weeks and 6 weeks). Materials and methods: Electrophoretic Deposition Technique (EPD) was used to obtain a uniform coating layer on commercially pure titanium screws. The tibia of 4 white New Zealand rabbits was chosen as implantation sites. Each tibia of rabbit received two screws, one strontium chloride coated and one hydroxyapatite coated and a total 30 histological sections were obtained for each coating material in each period of time. Histomorphometric analysis was performed to measure new bone formed ratio between implant and original bone, after 2 and 6 weeks healing periods. Results: There was increased in new bone formation ratio for the strontium chloride coated implants than hydroxyapatite coated implants and over the two periods of time. There was an increase in the new bone formation ratio at bone-implant interface with time. Conclusion: Coating commercially pure titanium implant with strontium chloride was more efficient in increasing osseointegration at bone implant interface than hydroxyapatite , which was demonstrated by higher new bone formation and maturation at the two periods of time 2 weeks and 6 weeks after implantation. Keywords: Histomorphometric, commercially pure titanium, strontium chloride, hydroxyapatite.
Background: This study was done to assist X-ray diffraction and biocompatability of glass ionomer cement reinforced by different ratios of Hydroxyapatite. Materials and Methods: The powder of glass ionomer cement reinforced by different ratios of Hydroxyapatite were used to get X-ray diffraction pattern by X-ray diffraction machine, While for biocompatibility test, A polyethylene tubes containing glass ionomer cement reinforced by different ratios of Hydroxyapatite were implanted on the dorsal submucosal site of Rabbit's tissues and histological slide were prepared for histopathological study. Results: X-ray diffraction test showed that all elements of glass ionomer cement reinforced by different ratios of Hydroxyapatite were react with eac
... Show MoreThe present study aims to evaluate the effects of methotrexate (MTX) with and without vitamin A (Vit. A) on some biochemical parameters and histological structure in male rabbits liver. Twenty male rabbits weighing 1250-1480 gm were divided into four equal number groups. The first group was given 2 ml distilled water as control group. The second group was given MTX (20 mg/kg), the third group was given Vit. A (5000 IU), while the fourth group was given MTX (20 mg/kg) +Vit. A (5000 IU) in alternative days. Following four weeks of treatment, lipid profile total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), [low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL)]; in addition to thyroid hormones tr
... Show MoreTo evaluate the toxicity of benzalkonium chloride in aquaculture, the hemato-serological indices of Nile tilapia Oreochromis niloticus are used as biomarkers. Following exposure to three concentrations of benzalkonium chloride BAC 0.1, 0.25, 0.50, and 1 mg/l (BAC1,2,3 and 4) in aquaria for two durations 21 and 42 days, the microbiological assay in fish aquaria, in addition to blood parameters were assessed. Except for the mean difference between BAC2 and BAC3 (P > 0.05) at 42 days, the mean values of the bacterial counts revealed a significant difference between all compared groups (0.05 ≥ P ≤ 0.01). Following exposure to the lower concentrations of BAC (1, 2 and 3), the main blood parameters of Oreochromis niloticus namely red bl
... Show MoreThis study aimed to improve the microencapsulation technique using a type coating the encapsulation Layer by Layer, which provide the best protection for life Lactobacillus casei in the extrusion method and use the microencapsulation of materials of the protein concentrated by protein 80% and the coating with alginate and chitosan have the results showed the variation in the difference of the binding process encapsulation yield among the types of coating through. by studying of these the effect o stability of the bio probiotic free cell and the three types coated towards three different concentrations from bile salts 0, 0.3, 0.5 and 0.7% when the periods of time different of zero and two and three hours at incubation the recorded
... Show MoreBackground. Nanocoating of biomedical materials may be considered the most essential developing field recently, primarily directed at improving their tribological behaviors that enhance their performance and durability. In orthodontics, as in many medical fields, friction reduction (by nanocoatings) among different orthodontic components is considered a substantial milestone in the development of biomedical technology that reduces orthodontic treatment time. The objective of the current research was to explore the tribological behavior, namely, friction of nanocoated thin layer by tantalum (Ta), niobium (Nb), and vanadium (V) manufactured using plasma sputtering at 1, 2, and 3 hours on substrates made of 316L stainless steel (SS),
... Show MoreAbstract
In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than natural based material composites and the specimen (Epoxy+6%glass fiber+6%RHA) has higher resistance erosion than composites reinforced with carrot powder and sawdust at 30cm , angle 60
... Show MoreLight naphtha treatment was achieved over 0.3wt%Pt loaded-alumina, HY-zeolite and Zr/W/HY-zeolite catalysts at temperature rang of 240-370°C, hydrogen to hydrocarbon mole ratio of 1-4 0.75-3 wt/wt/hr, liquid hourly space velocity (LHSV) and at atmospheric pressure. The hydroconversion of light naphtha over Pt loaded catalyst shows two main reactions; hydrocracking and hydroisomerization reactions. The catalytic conversion of a light naphtha is greatly influenced by reaction temperature, LHSV, and catalyst function. Naphtha transformation (hyroisomerization, cracking and aromatization) increases with decreasing LHSV and increasing temperature except hydroisomerization activity increases with increasing of temperature till 300°C then began
... Show MoreBackground: Simultaneous and staged guided bone regeneration (GBR) is one of the several surgical techniques that have been developed in the past two decades to regenerate bone and thus to allow implant placement in compromised sites (fenestration and dehiscence). It is a surgical procedure that consists of the placement of a cell-occlusive physical barrier between the connective tissue and the alveolar bone defect. The treatment concept advocates that regeneration of osseous defects is predictably attainable via the application of occlusive membranes, which mechanically exclude non-osteogenic cell populations from the surrounding soft tissues, thereby allowing osteogenic cell populations originating from the parent bone to inhabi
... Show More