Background: It may be an important prospective clinical use of manufacturing of porous implant for clinical situations, such as cases of limitation in bone height, low bone density .The small segment of porous implant an effective osseointegration allows increasing in contact area provided for small segmented porous provided by its surface configuration. This study was done to Fabricate porous titanium implants by powder technology, as well as the observation of removal torque values of porous titanium implants compared to smooth titanium implants. Materials and methods: Twenty porous titanium implants (3.2mm in diameter and 8mm in length) were manufactured by powder technology using commercially pure titanium powder of ≤75um particles size, with polyvinyl alcohol powder of 212-300um particle size, as a space holder, by volume ratio (70:30) % respectively. The mixed powder was compacted using punch and die set -specially designed for this study –under 20 bar then sintering at 900 ºC by the use of argon gas. Twenty smooth titanium implants were prepared of (3.2mm in diameter and 8mm in length) by lathing of commercially pure titanium rod as a control group. The implants were examined by X-ray diffraction (XRD) and scanning electron microscope (SEM), as well as estimation of porosity percentage. For each tibia of the 20 white New Zealand rabbits, one implant of each type (one porous in right, and the smooth in left tibia), were inserted through surgical procedure carried under serial condition. Mechanical test was performed to evaluate the bone-implant interface, after (2 and 6 weeks) healing periods . Results: Porous implants were obtained successfully by powder technology with 52% porosity and pore size 210um 17±. The porous implant showed significantly higher removal torque values when compared to smooth implants at the two different intervals of examination (2,6 weeks) , this proved to be statistically highly significant, also a highly significant difference was noticed for the means of the torque removal values in the same group at different implantation , with no evidence of clinical features of inflammatory reaction with both . Conclusions: Powder technology seemed to be particularly advantageous in fabrication of porous titanium. Porous implant show an increasing bone ingrowth compared with the smooth type represented by higher removal torque for both healing periods (2, 6) weeks . Key words: Porous titanium implant, powder technology, removal torque test.
Background. Implant insertion in regions with poor bone quantity, such as the posterior maxilla, is potentially associated with an increased rate of implant failure. Calcium sulfate can be used as the coating material for commercially pure titanium (CpTi) and as the bone graft material around implants when bound to eggshell powder to enhance the bone quality and quantity of bone defect regions. This study performed a torque removal test to evaluate the effectiveness of eggshell powder as a bone substitute for filling bone defects around CpTi-coated implants coated with nanocrystalline calcium sulfate. Materials and Methods. Eighty screw implant designs were used in the tibiae of 20 white New Zealand rabbits. A total of uncoated 20 s
... Show MoreThe present study explores the solar-induced photocatalytic degradation of reactive red (RR) and reactive turquoise (RT) dyes in a single system using TiO2 immobilized in xanthan gum (TiO2/XG), synthesized using the sol–gel dip-coating technique for direct precipitation. SEM-EDX, XRD, FTIR, and UV–Vis were used to assess the characteristics of the resulting catalyst. Moreover, the effects of different operating parameters, specifically pH, dye concentration, TiO2/XG concentration, H2O2 concentration, and contact time, were also investigated in a batch photocatalytic reactor. The immobilized TiO2/XG catalyst showed a slight adsorption degradation efficiency and then improved the RR and RT dye degradation activity (92.5 and 90.8%
... Show MoreDental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which
... Show MoreGlass Ionomer Cement (GIC) is one of the important dental temporary filing materials. The aim of this study is to evaluate the effect of adding 3, 5 and 7 wt. % of TiO2 microparticles to conventional GIC powder (Riva Self Cure) on mechanical properties and its effect on absorption and solubility processes. TiO2 particles additives improved compressive strength and biaxial flexural strength, where the compressive strength increased with increasing in the added ratio, while the highest value of the biaxial flexural strength was at 3 wt.%. The addition of TiO2 particles improved the surface Vickers microhardness values, with highest value at 5 wt. %. On other hand TiO2 addition im
... Show MoreFire is the most sever environmental condition affecting on concrete structures, thus investigating for fire safety in structural concrete is important for building construction. The slow heat transfer and strength loss enables concrete to be effective for fire resistance. Concrete structures withstand when exposed to fire according to: their thermal properties, rate of heating, characteristic properties of concrete mixes and their composition and on the duration of fire, and concerned as thermal property with other factors such as loss of mass which affected by aggregate type, moisture content, and composition of concrete mix. The present research goal is to study the effect of rising temperature on the compressive strength of the rea
... Show MoreIn this work Different weight of pure Zinc powder suspended particles in 4ml base engine Oil were used.
Intensity of Kα Line was measured for the suspended particles ,also for mixture which consist from Zinc particle blended with Engine base Oil. Calibration Curve was drawn between Ikα line Intensity and Zinc concentration at different operation condition. The Lower Limit detection (LLD) and Sensitivity (m) of Spectrometer were determined for different Zinc Concentration (Wt%). The results of LLD and m for Samples were analyzed at Operation Condition of 30KV,17mA is best from Samples were analyzed at Operation Condition of 25KV,15mA
Reactive Powder Concrete (RPC) is one of the most advanced recent high compressive strength concrete. This work explored the effects of using glass waste as a fractional replacement for fine aggregate in reactive powder concrete at levels of 0%, 25%, 50%, and 100%. Linear and mass attenuation coefficients have been calculated as a function of the sample's thickness and bremsstrahlung energy. These coefficients were obtained using energy selective scintillation response to bremsstrahlung having an energy ranging from (0.1-1.1) MeV. In addition, the half-value thickness of the samples prepared has been investigated. It was found that there is a reversal association between the attenuation coefficient and the energy of the bremsstrahlu
... Show More