Background: It may be an important prospective clinical use of manufacturing of porous implant for clinical situations, such as cases of limitation in bone height, low bone density .The small segment of porous implant an effective osseointegration allows increasing in contact area provided for small segmented porous provided by its surface configuration. This study was done to Fabricate porous titanium implants by powder technology, as well as the observation of removal torque values of porous titanium implants compared to smooth titanium implants. Materials and methods: Twenty porous titanium implants (3.2mm in diameter and 8mm in length) were manufactured by powder technology using commercially pure titanium powder of ≤75um particles size, with polyvinyl alcohol powder of 212-300um particle size, as a space holder, by volume ratio (70:30) % respectively. The mixed powder was compacted using punch and die set -specially designed for this study –under 20 bar then sintering at 900 ºC by the use of argon gas. Twenty smooth titanium implants were prepared of (3.2mm in diameter and 8mm in length) by lathing of commercially pure titanium rod as a control group. The implants were examined by X-ray diffraction (XRD) and scanning electron microscope (SEM), as well as estimation of porosity percentage. For each tibia of the 20 white New Zealand rabbits, one implant of each type (one porous in right, and the smooth in left tibia), were inserted through surgical procedure carried under serial condition. Mechanical test was performed to evaluate the bone-implant interface, after (2 and 6 weeks) healing periods . Results: Porous implants were obtained successfully by powder technology with 52% porosity and pore size 210um 17±. The porous implant showed significantly higher removal torque values when compared to smooth implants at the two different intervals of examination (2,6 weeks) , this proved to be statistically highly significant, also a highly significant difference was noticed for the means of the torque removal values in the same group at different implantation , with no evidence of clinical features of inflammatory reaction with both . Conclusions: Powder technology seemed to be particularly advantageous in fabrication of porous titanium. Porous implant show an increasing bone ingrowth compared with the smooth type represented by higher removal torque for both healing periods (2, 6) weeks . Key words: Porous titanium implant, powder technology, removal torque test.
In this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show MoreWe studied in this research how to find a method of estimating the quantity (Kinetically) of three kinds of Insecticide and their mixture, which are used in agriculture. The extracted insecticide from the polluted samples with these insect from air, soil, and the leaves of trees, have be used into the reaction with H2O2 and benzedine. The kinetic study of this reaction was formed in basic medium,( pH= 8.6), using UV. Spectra at (?= 420nm). The study showed that the reaction is the first order, and the speed of the reaction was used to estimate the concentration of insecticide in solution and mixture. The experiments of this study indicated that this method has the speed and efficiency for quantitatively estimating these
... Show MoreA nano-sensor for nitrotyrosine (NT) molecule was found by studying the interactions of NT molecule with new B24N24 nanocages. It was calculated using density functionals in this case. The predicted adsorption mechanisms included physical and chemical adsorption with the adsorption energy of −2.76 to −4.60 and −11.28 to −15.65 kcal mol−1, respectively. The findings show that an NT molecule greatly increases the electrical conductivity of a nanocage by creating electronic noise. Moreover, NT adsorption in the most stable complexes significantly affects the Fermi level and the work function. This means the B24N24 nanocage can detect NT as a Φ–type sensor. The recovery time was determined to be 0.3 s. The sensitivity of pure BN na
... Show MoreBackground: The surgical treatment of pilonidal sinus varies from wide excision and laying the wound open or excision with primary closure or excision with the use of skin graft in some special cases.
Objectives: The objectives of this study is to determine the efficacy of treating non complicated pilonidal sinus disease with minimal excision and primary closure technique, complications and recurrence rate.
Patients and methods: This is a prospective study conducted in shahid ahmed ismaiel hospital in rania – As sulaimania IRAQ during the period from December 2013 to January 2016 and was carried on one hundred (100) consecutive patients with non complicated non recurrent pilonidal sinus patients who were treated with minimal exci
Adsorption of lead ions from wastewater by native agricultural waste, precisely tea waste. After the activation and carbonization of tea waste, there was a substantial improvement in surface area and other physical characteristics which include density, bulk density, and porosity. FTIR analysis indicates that the functional groups in tea waste adsorbent are aromatic and carboxylic. It can be concluded that the tea waste could be a good sorbent for the removal of Lead ions from wastewater. Different dosages of the adsorbents were used in the batch studies. A random series of experiments indicated a removal degree efficiency of lead reaching (95 %) at 5 ppm optimum concentration, with adsorbents R2 =97.75% for tea. Three mo
... Show MoreA comparison between the resistance capacity of a single pile excited by two opposite rotary machines embedded in dry and saturated sandy soil was considered experimentally. A small-scale physical model was manufactured to accomplish the experimental work in the laboratory. The physical model consists of: two small motors supplied with eccentric mass 0·012 kg and eccentric distance 20 mm representing the two opposite rotary machines, an aluminum shaft with 20 mm in diameter as the pile, and a steel plate with dimensions of (160 × 160 × 20 mm) as a pile cap. The experimental work was achieved taking the following parameters into consideration, pile embedment depth ratio (L/d; length to diameter) and operating freq
... Show MoreIn this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show More