Background: The presence of anatomic variations within the maxillary sinus such as septa has been reported to increase the risk of sinus membrane perforation during sinus elevation procedure for implant placement. This study aimed to measure the septal heights and correlate it with different types of septa. Material and methods: Thirty patients (15 males and 15 females) with partially edentulous maxillae and mean age (35) years were enrolled in this study. Sixty sinuses scanned with Spiral multislice Computed Tompgraphy, septal height measured after evaluation of septal type whether it was primary or secondary. Results: The results showed that 72.5 % of the septa detected were primary and this is statistically significant when compared with the percentage of secondary type (27.5%). There was a statistically significant difference in the height of septa between the two types, and the primary septa were higher. There was no significant difference between septal type and sex. Conclusions: A sound knowledge of maxillary sinus anatomy and anatomic variations such as septa is essential to prevent complication during surgical interventions involving this region.
This study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreA medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s un
... Show MoreThe effect of different antibiotics on growth pigment and plasmid curing of Serratia marcescens were studied, S. marcescens was cultured in media containing(16_500)µg/ml of antibiotics, curing mutants unable to produce prodigiosin and lost one plasmid band were obtained of of ampicillin, amoxillin, antibiotics concentrations (64 500) µg/ml metheprim, ultracloxam, azithromycin, cephalexin and erythromycin treated with (350 500) µg/ml of The mutant cells rose- light color and and refampicin revealed S.marcescens inhibited ciprodar and tetracyclin, lincomycin did not lost the plasmid band chlaforan
In this paper, the process of comparison between the tree regression model and the negative binomial regression. As these models included two types of statistical methods represented by the first type "non parameter statistic" which is the tree regression that aims to divide the data set into subgroups, and the second type is the "parameter statistic" of negative binomial regression, which is usually used when dealing with medical data, especially when dealing with large sample sizes. Comparison of these methods according to the average mean squares error (MSE) and using the simulation of the experiment and taking different sample
... Show MoreRationale, aims and objectives: A review of studies published over the last six years gives update about this hot topic. In the middle of COVID-19 pandemic, this study findings can help understand how population may perceive vaccinations. The objectives of this study were to review the literature covering the perceptions about influenza vaccines and to determine factors influencing the acceptance of vaccination using Health Belief Model (HBM). Methods: A comprehensive literature search was performed utilizing PubMed and Google Scholar databases. Three keywords were used: Influenza vaccine, perceptions, and Middle East. Empirical studies that dealt with people/ HCW perceptions of influenza vaccine in the Middle East and writt
... Show MoreBreast cancer (BC) is first of the top 10 malignancies in Iraq. Dose‐volume histograms (DVHs) are most commonly used as a plan evaluation tool. This study aimed to assess DVH statistics using three‐dimensional conformal radiotherapies in BC in an adjuvant setting.
A retrospective study of 70 histologically confirmed women diagnosed with BC was reviewed. The study was conducted between November 2020 and May 2021, planning for treatment with adjuvant three‐dimensional conformal radiotherapies. The treatment plan used for each woman was based on an analysis of the volumetric dose, inclu
This research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions, (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear
... Show More