Background: Oral squamous cell carcinoma is the most prevalent malignant neoplasm of the oral cavity which results from accumulated genetic and epigenetic alterations. It is not always inexorable and may be reversible if early intervention in the process can occur to prevent further genetic mutation and disease progression. The FHIT gene is a tumor suppressor gene located in FRA3B region which is the most active common fragile site, where DNA damage leading to aberrant transcripts and translocations frequently occur. The WWOX is a tumor suppressor gene that plays a central role in tumor suppression through transcriptional repression and apoptosis, with its apoptotic function the more prominent of the two. This study aimed to evaluate and compare the immunohistochemical expression of FHIT and WWOX in normal oral mucosa, oral epithelial dysplasia and oral squamous cell carcinoma and to correlate the expression of the mentioned markers with the clinicopathological features and to show the expression of studied markers with each other. Materials and methods: Fifty formalin-fixed, paraffin embedded tissue blocks (10 cases of normal oral mucosa, 19 cases of oral epithelial dysplasia, and 21 cases of oral squamous cell carcinoma) were included in this study. Immunohistochemical staining was performed using anti FHIT polyclonal antibody, and anti WWOX polyclonal antibody. Results: Positive IHC of FHIT was detected with high score in all cases of NOM, 16 cases (84%) of OED and 18 cases (86%) of OSCC. For WWOX expression positive IHC detected with high score in all cases (100%) of NOM, 14 cases (74%) of OED and 15 cases (71%) of OSCC. There was statistically highly significant correlation of both markers in OED and non significant correlation in OSCC, with significant differences among studied groups. Conclusions: These results signifying both markers cooperative tumor suppressive role and potential pathological transition from normal oral mucosa to dysplastic epithelium and subsequently cause malignant oral lesions.
In this research, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). An optimization procedure using reflective (~85%) InSb etalon (~50µm) thick is described. For this etalon with a (50 µm) spot diameter beam, the minimum switching power is (~0.078 mW) and switching time is (~150 ns), leading to a switching energy of (~11.77 pJ) for this device. Also, the main role played by the temperature to change the etalon characteristic from nonlinear to linear dynamics.
The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. T
... Show MoreAbstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controll
... Show MoreThe Cretaceous Balambo Formation from three sections in Kurdistan Region of Northern Iraq was studied. The selected sections are located in the Zagros Fold -Thrust Belt. Eleven rock samples were analyzed by means of the organic geochemical method, Bitumen extraction method, and gas chromatography/mass spectrometry to determine the bitumen and hydrocarbon content, kerogen types, origin of organic matter, thermal maturity level, and depositional environment. The analyzed samples are considered to have an excellent potential in Baranan-1.G1 and Sazan sections, with poor to fair potential in Baraw section. The Baranan-1.G1 source rocks are of type II kerogen (oil prone), whereas Sazan and Baraw samples are of type II/III (oil/ gas prone). De
... Show MoreIn this paper, some estimators for the unknown shape parameter and reliability function of Basic Gompertz distribution have been obtained, such as Maximum likelihood estimator and Bayesian estimators under Precautionary loss function using Gamma prior and Jefferys prior. Monte-Carlo simulation is conducted to compare mean squared errors (MSE) for all these estimators for the shape parameter and integrated mean squared error (IMSE's) for comparing the performance of the Reliability estimators. Finally, the discussion is provided to illustrate the results that summarized in tables.
We present a simple model of charge transfer current through sensitizer N3 molecule contact to TiO2 and ZnO semiconductors to calculate the charge transfer current. The model underlying depends on the fundamental parameters of the charge transfer reaction and it is based on the quantum transition theory approach. A transition energy, driving energy and potential barrier have been taken into account charge transfer current at N3 / TiO2 and N3 / ZnO devices with wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system.The effects of the transition energy and potential barrier are computed and discussion on charge transfer current.
... Show MoreChloroquine and Hydroxychloroquine drugs are widely prescribed for malaria disease. Since the end of 2019, humans have been under threat due to a disease called (COVID-19), which was first reported in China. Many methodical approaches have been reported to quantify chloroquine and hydroxychloroquine in blood, urine, plasma, serum, and pharmaceutical dosage form. Some of these techniques are spectrophotometry, liquid chromatography with a mass detector, gas chromatography, and ultra-performance, high-performance liquid chromatography (HPLC), in addition to electrochemical methods. This literature review discusses various analytical methods for the determining hydroxychloroquine and chloroquine.
Sphingolipids are key components of eukaryotic membranes, particularly the plasma membrane. The biosynthetic pathway for the formation of these lipid species is largely conserved. However, in contrast to mammals, which produce sphingomyelin, organisms such as the pathogenic fungi and protozoa synthesize inositol phosphorylceramide (IPC) as the primary phosphosphingolipid. The key step involves the reaction of ceramide and phosphatidylinositol catalysed by IPC synthase, an essential enzyme with no mammalian equivalent encoded by the AUR1 gene in yeast and recently identified functional orthologues in the pathogenic kinetoplastid protozoa. As such this enzyme represents a promising target for novel anti-fungal and anti-protozoal drugs. Given
... Show More