Background: Change in palatal vault shape and Reinforcement of high impact acrylic denture base resin may in turn affect the dimensional accuracy of acrylic resin and affecting the fitness of the denture.This study evaluated tostudy the effect of fiber reinforcement for high-impact acrylic resin denture base with different palatal vault shapes on adaptation or gap space between the denture base and the stone cast and compare with non-fiber reinforcement and effect of palatal vault shapes on adaptation of non-reinforced and fiber reinforced high impact denture base acrylic resin Material and method: Three different palatal vault shapes were prepared on standard casts using CNC (computer numerical control) machine. 60 samples of heat polymerized high impact acrylic resin maxillary denture base were fabricated onto each definitive cast according to manufacturer instruction. Samples divided into three main experimental groups represented the three different palatal vault shapes (20 samples for each main group); 1st rounded 2nd U-shaped and the 3rd groups V-shaped. Each main group divided into two subgroups (10 samples for each subgroup) representing non fiber reinforced high impact acrylic group as a control and the fiber reinforced high impact acrylic. The measurements of gap-space changes of denture bases done at two stages, 1st 24 hour after polymerization and 2nd measurement done after one month storage in distilled water at room temperature. Results and conclusion: Dimensional changes of high impact acrylic denture base not affected by glass fiber reinforcement p-value for all reference pointes ≥ 0.05, while topographical change in maxillary vault shapes effects on the gap-space in non-fiber reinforced high impact acrylic denture base p-value < 0.05 in point one, four, and seven.
Been investigating a Pfyrus antigen hepatitis pattern J and Virus-positive rubella viral hepatitis antibodies pattern J. declaration followed by the percentage rate-positive patients of measles Allmana antibodies
The study addressed the water ecosystems of the marshes of Maysan Governorate as one of the important areas in Iraq in terms of the environmental, economic and tourism aspects. This area was exposed to great environmental changes due to natural and human factors which greatly affected the water ecosystem and made the area susceptible to many problems that affected the biological life of living organisms. The marshes of Maysan Governorate was affected by vital factors and non-vital factors. The marshes of Maysan Governorate was characterized by the UN Organization as one of the most important centers of biodiversity in the world because of the abundance of different and rare living organisms such as birds, fish, and reptiles as well as the e
... Show MoreThe leaf miners Pegoinya terbrans (Rondani) and P. bicolor (Wiedemann) (Diptera; Anthomyiidae) were newly recorded in Iraq. Host plants of these leaf miners and P. cunicularia (Rondani) were identified: P. bicolor was found to be monophagous, whereas P. terbrans and P. cunicularia were oligophagous . It was found that Cirsixim syriaca and Silybum marianum were more susceptible to P. terbrans than the other ones. Infectivity and severity of infestation were estimated for most susceptible weeds against P. terbrans and P.bicolor. These leaf miners. Have two generations a year.
The In this experimental study, natural stone powder was utilized to improve a cohesive soil’s compaction and strength properties. According to the significant availability of limestone in the globe, it has been chosen for the purpose of the study, in addition to considering the existing rock industry massive waste. Stone powder was used in percentages of 4, 8, 12, 16% replaced from the soil weight in dry state. Some of cohesive soil’s consistency, shear, and compaction properties were depicted after improvement. The outcomes yielded in significant amendments in the experimented geotechnical properties after stone powder addition considering 60 days curing period. Cohesion and friction angle were notably increased by
... Show MoreThe variation of compression index Cc and swelling index Cs with the degree of saturation S was studied on unsaturated and fully saturated soils for different degrees of saturation (100%, 91%, 85%, 75%, 60%), several mathematical equations were found to describe these relationships, these equations can be used to predict settlement during the consolidation process in unsaturated and fully saturated soils.
Ferrite with general formula Ni1-x Cox Fe2O4(where x=0.0.1,0.3,0.5,0.7, and 0.9), were prepared by standard ceramic technique. The main cubic spinel structure phase for all samples was confirmed by x-ray diffraction patterns. The lattice parameter results were (8.256-8.299 °A). Generally, x -ray density increased with the addition of Cobalt and showed value between (5.452-5.538gm/cm3). Atomic Force Microscopy (AFM) showed that the average grain size and surface roughness was decreasing with the increasing cobalt concentration. Scanning Electron Microscopy images show that grains had an irregular distribution and irregular shape. The A.C conductivity was found to increase with the frequency and the addition of Cobal
... Show MoreA series of heterogeneous basic catalysts of CaO, MgO and CaMgO2 at different calcination temperature were synthesized via solution combustion method. Different characterization techniques have been carried out to investigate the structure of the produced catalysts i.e. X-ray diffraction (XRD), particle size analyzer, morphology by atomic force microscope (AFM) and reflection using UV-VIS diffuse reflectance spectra. The particles size analyzer revealed that the mixed oxide catalysts calcined at different calcination temperature possess smaller nano size particles compared to pure CaO. Moreover, the energy band gap was calculated based on the results of diffuse reflectance spectra. The energy band gap was redu
... Show MoreIn this current work, Purpose; to clearly the fundamental idea for constructing a design and
investigation of spur gear made of composite material its comes from the combination of (high
speeds, low noise, oil-les running, light weight, high strength, and more load capability)
encountered in modern engineering applications of the gear drives, when the usual metallic gear
cannot too overwhelming these combinations.
An analyzing of stresses and deformation under static and dynamic loading for spur gear tooth
by finite element method with isoparametric eight-nodded in total of 200 brick element with 340
nods in three degree of freedom per node was selected for this analysis. This is responsible for the
catastropic fa