Background: Polymers are very rarely used in their form. These modifications are carried out in order to improve the properties of polymers.Recently silver have been used successfully as antimicrobial (medical and dental) biomaterials that can prevent caries and infection of implants Purposes: The aim of the present in vitro study is to evaluate the effect of addition of silver nitrate to acrylic resin in different concentrationsthrough several tests part of these are: The effect of this additive on impact strength, transverse strength, and tensile strength of AgNO3 – loaded resin, and to assess any effect of addition of silver nitrate on coloration of acrylic resin. Materials and methods: Different concentrations of silver nitrate (9.375, 15, 30, 60, 120, 150, 300, 600 and 900 ppm) were prepared from stock solution of 1000 ppm silver nitrate. The specimens were prepared in accordance with the manufacturer's instructions and the tested silver nitrate solution was added to the acrylic resin powder and monomer in a fixed volume (0.2ml). Controls devoid of silver nitrate were included. Results: Fourier transform infra-red confirmed that there was no chemical bond between the Poly methyl methacrylate and silver nitrate. There was insignificant increasing (P=0.05) in impact strength observed when compared with control group. In transverse strength test, significant reduction was show (P<0.001). While for tensile strength there was insignificant reduction with 9.375(P=0.05NS) and 15(P=0.42NS) ppm silver nitrate. However, it was significant above 15 ppm (P<0.001). Darkening of silver nitrate -loaded resins were shown to be started with concentration of silver nitrateof 300 ppm and above. Conclusions: The additions of silver nitrate to acrylic resins yield good color stability and mechanical properties, depending on the concentration of silver nitrate.
In this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer composite materials. They were prepared in this research, as a complete prosthesis and partial denture base materials was prepared, by using cold cure poly methyl methacrylate (PMMA) resin matrix. The composite specimens in this research consist of two groups according to the types of reinforced particles, were prepared by using casting methods, type (Hand Lay-Up) method. The first group consists of PMMA resin reinforced by (nano-ZrO
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show MoreIn this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MoreIn this study, polymeric composites were prepared from unsaturated polyester as a base material with glass powder (fluorescent) in different weight ratios (4, 6, 8, 10,and 11%) as a support material and after comparison before and after reinforcement of the prepared composites, an increase was found. In the values of mechanical properties (hardness, compressive strength), the shock resistance values decreased, but an increase in temperature leads to an increase in the values of shock resistance, as well as the values of compressive strength And it reduces the hardness value.
The transfer of chemical pollutants from bottled water into water due to heat, sunlight and poor storage is one of the most serious threats to human health around the world, the objective of this study was to estimate the pH value and the transport of heavy metals from plastic bottles to water, for this purpose, 30 bottles of water for 10 local brands were collected and divided into three groups, the first was left at room temperature 25°C, The second was placed in a heat oven at 25°C and the third in another oven at 50°C for two weeks. The results showed significant differences at (P<0.05) between water samples, pH value and concentrations of heavy metals (Sb, Pb, Ni, Cu, Cr, Cd and Fe) we
... Show MoreRotating blades are the important parts in gas turbines. Hence, an accurate mathematical estimation (F.E.M) of the stresses and deformations characteristics was required in the design applications to avoid failure. In recent year’s there are researchers interest in the effect of temperature on solid bodies has greatly increased, The main of this study investigated the thermal and rotational effects. So, the thermal stresses due to high pressure and temperature are studies, also determine the steady state stresses and deformations of rotating blades due to mechanical effect. Many parameters such as thickness and centre of rotating are investigated in this paper. The
... Show MoreBlades of gas turbine are usually suffered from high thermal cyclic load which leads to crack initiated and then crack growth and finally failure. The high thermal cyclic load is usually coming from high temperature, high pressure, start-up, shut-down and load change. An experimental and numerical analysis was carried out on the real blade and model of blade to simulate the real condition in gas turbine. The pressure, temperature distribution, stress intensity factor and the thermal stress in model of blade have been investigated numerically using ANSYS V.17 software. The experimental works were carried out using a particular designed and manufactured rig to simulate the real condition that blade suffers from. A new cont
... Show More