Background: Polymers are very rarely used in their form. These modifications are carried out in order to improve the properties of polymers.Recently silver have been used successfully as antimicrobial (medical and dental) biomaterials that can prevent caries and infection of implants Purposes: The aim of the present in vitro study is to evaluate the effect of addition of silver nitrate to acrylic resin in different concentrationsthrough several tests part of these are: The effect of this additive on impact strength, transverse strength, and tensile strength of AgNO3 – loaded resin, and to assess any effect of addition of silver nitrate on coloration of acrylic resin. Materials and methods: Different concentrations of silver nitrate (9.375, 15, 30, 60, 120, 150, 300, 600 and 900 ppm) were prepared from stock solution of 1000 ppm silver nitrate. The specimens were prepared in accordance with the manufacturer's instructions and the tested silver nitrate solution was added to the acrylic resin powder and monomer in a fixed volume (0.2ml). Controls devoid of silver nitrate were included. Results: Fourier transform infra-red confirmed that there was no chemical bond between the Poly methyl methacrylate and silver nitrate. There was insignificant increasing (P=0.05) in impact strength observed when compared with control group. In transverse strength test, significant reduction was show (P<0.001). While for tensile strength there was insignificant reduction with 9.375(P=0.05NS) and 15(P=0.42NS) ppm silver nitrate. However, it was significant above 15 ppm (P<0.001). Darkening of silver nitrate -loaded resins were shown to be started with concentration of silver nitrateof 300 ppm and above. Conclusions: The additions of silver nitrate to acrylic resins yield good color stability and mechanical properties, depending on the concentration of silver nitrate.
This study was conducted in the field of the Poultry Research Station of the animal resources Department / office of Agricultural Research / Ministry of Agriculture from the period 4th April to16th May2021.This study was aimed to investigate the effect of using avocado and chia oil and their mixture in broiler diets on the final productive performance and meat cholesterol concentration and measuring meat oxidation indicators after storing it for 60 days. 300 one-day-old (Ross308) chicks were fed on diets that used avocado oil and chia with percentages of 0, 0.2, 0.4, 0.6%, respectively, and their mixture consisting of 0.0, 0.1, 0.2, 0.3 each of avocado and chia oil (50% avocado + 50% chia oil). The experiment included 10 treatments
... Show MoreThis present study is aimed at deciding the impact of exercises adapted to the ranges of movements of the arm on the performance of javelin throwing. As long as javelin throwing is quite a complex athletic event that presupposes a considerable amount of strength, speed, and biomechanical accuracy, it is crucial to learn whether the exercises designed to target the peculiarities of arm movements can have a positive effect on the performance of javelin throwers. To the study, experimental research with a single group of six youth javelin throwers was carried out. Before and after the eight-week training program, the pre-tests and post-tests were conducted to find the results of training with a specific focus on resistance exercises. Significa
... Show MoreThe semiempirical (PM3) and DFT quantum mechanical methods were used to investigate the theoretical degradation of Indigo dye. The chemical reactivity of the Indigo dye was evaluated by comparing the potential energy stability of the mean bonds. Seven transition states were suggested and studied to estimate the actually starting step of the degradation reaction. The bond length and bond angle calculations indicate that the best active site in the Indigo dye molecule is at C10=C11. The most possible transition states are examined for all suggested paths of Indigo dye degradation predicated on zero-point energy and imaginary frequency. The first starting step of the reaction mechanism is proposed. The change in enthalpy, Gibbs free energ
... Show MoreThis paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closed-loop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadi
... Show MoreThe adsorption process of 5-Fluorouracil (5FU) drugs on Aluminum nitride nanotubes surface (AlNNTs) have been evaluated through density functional theory (DFT). The DFT results show that the interaction of AlNNTs with the F atoms of 5FU drugs is strong due to the fact that the amount of adsorption energy was about − 29.65 kcal.mol−1. Conversely, the interaction of the 5FU through O atoms with the AlNNTs was weaker due to the lower value of adsorption energy. Also, based on the values of Gibbs free energy, the 5FU adsorption on the surfaces of AlNNTs was spontaneous. In addition, based on natural bond orbital (NBO) analysis, the direction of charge transfer was from fluorine’s σ orbitals of the drug to nitrogen’s and aluminum’s n*
... Show MoreBackground: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness
... Show MoreBackground: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness
... Show MorePolyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increas
... Show More