Preferred Language
Articles
/
jbcd-537
Nugget mechanical properties of combination (rectangular and round) welded and soldered stainless steel wires
...Show More Authors

Background: This study aimed to compare the mechanical properties between four groups of newly fabricated combination wires according to their method of union, according to the gauges of wires and a comparison were made between them and their originals. Materials and method: A total of 60 stainless steel combination wires were fabricated , divided into four groups according to gauge of wires and their method of union, each of them with 15 samples, the groups were welded (0.016x0.022-0.016 and 0.016x0.022-0.018) and soldered (0.016x0.022-0.016 and 0.016x0.022-0.018), samples were made according to certain parameters which were : for the welded samples: length,weight, duration of pulsation and size of copper electrode tips used; for the soldered samples: length, weight, distaince from the heat source and duration of heat application Results: The descriptive statistics showed that the maximum value for ultimate force and ultimate tensile strength was for the soldered 0.016x0.022+0.018 inches combination wires, while the minimum was for the welded 0.016x0.022+0.016inches wires. Elastic modulus showed higher values for the soldered 0.016x0.022+0.016 and resiliency values for the welded 0.016x0.022+0.016 were the highest. Comparison between combination wires and their originals showed a decrease in the mechanical properties after soldering and welding. Conclusion: Higher gauge wires and soldering method of union showed better mechanical properties than the other groups and both soldering and welding method showed changes in the mechanical properties of the newly fabricated wires when comparing them with their originals.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 21 2022
Journal Name
International Journal Of Health Sciences
Effect of transglutaminase on mechanical and barrier properties of edible films made from soybeen and why protein isolate
...Show More Authors

This study was aimed to study the effect of adding transglutaminase (TGase) on the mechanical and reservation properties of the edible films manufactured from soybean meal protein isolate (SPI) and whey protein isolate(WPI). The results showed an improvement in the properties with increase in the WPI ratios. Thickness of the SPI films amounted 0.097 mm decreased to 0.096 mm for the WPI: SPI films at a ratio of 2:1, when TGase was added decreased to 0.075 mm. While the tensile strength increased from 7.64 MPa for SPI films to eight MPa for the WPI: SPI films at a ratio of 2:1, when TGase was added increased to 11.04 MPa. Also, the elongation of the WPI: SPI films at a ratio of 2:1 presence of the TGase decreased to 40.6% compared wit

... Show More
View Publication
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Future Dental Journal
Studying some mechanical properties of maxillofacial silicone elastomer before and after incorporation of intrinsic pigments and artificial aging
...Show More Authors

Objective Advantageous properties of silicone elastomer made it one of the favorable materials in maxillofacial prosthesis construction, but these properties may change after months of usage or after pigments addition. This study aimed to define the optimum concentration for a mixture of two types of intrinsic pigments that added to VST-50 maxillofacial silicone material and study their effects on mechanical properties before and after artificial aging. Methods After the pilot study was conducted, 0.1% by weight of rayon flocking and 0. 2% by weight of burnt sienna intrinsic pigment concentration was selected because of improvement in tested mechanical properties of VST-50 maxillofacial silicone. A total of one hundred and eighty samples we

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Engineering
Development the Mechanical Properties of (AL-Li-Cu) Alloy
...Show More Authors

The aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Mechanical Properties of MIG Joints for Dissimilar Aluminum Alloys
...Show More Authors

The research aims to investigate the effects of GMAW or MIG welding process on the mechanical properties of dissimilar aluminum alloys 2024-T351 and AA 6061- T651. A series of experimental techniques have been conducted to evaluate mechanical properties of the alloys, by carrying out hardness, tensile and bending tests for welded and un-welded specimens.

Metal inert gas (MIG) has been carried out on sheet metal using ER- 4043(AlSi5) as a filler metal and argon as shielded gas. The welded joints were tested by X-ray radiography and Faulty pieces were excluded.

Welding joints without defects are subjected to heat treatment including heating the joints in furnace to 170 °C for half an hour then air cooling to rel

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 03 2012
Journal Name
Baghdad Science Journal
Mechanical properties of carbon nanotube reinforced Epoxy Resin composites
...Show More Authors

Overlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Jun 07 2018
Journal Name
Applied Physics A
Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite
...Show More Authors

View Publication
Crossref (56)
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Effect of Grain and Calcinations Kaolin Additives on Some Mechanical and Physical properties on Low Density Polyethylene Composites
...Show More Authors

In this work, a composite material was prepared from Low-density polyethylene (LDPE) with different weight percent of grain and calcinations kaolin at temperature of (850oC) using single screw extruder and a mixing machine operated at a temperature between (190-200oC). Some of mechanical and physical properties such as tensile strength, tensile strength at break, Young modulus, and elongation at break, shore hardness and water absorption were determined at different weight fraction of filler (0, 2, 7, 10 and 15%). It was found that the addition of filler increases the modulus of elasticity, elongation at break, shore hardness and impact strength; on other hand, it decreases the tensile strength and tensile strength

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Engineering
Comparison the Physical and Mechanical Properties of Composite Materials (Al /SiC and Al/ B4C) Produced by Powder Technology
...Show More Authors

In this investigation, metal matrix composites (MMCs) were manufactured by using powder technology. Aluminum 6061 is reinforced with two different ceramics particles (SiC and B4C) with different volume fractions as (3, 6, 9 and 12 wt. %). The most important applications of particulate reinforcement of aluminum matrix are: Pistons, Connecting rods etc. The specimens were prepared by using aluminum powder with 150 µm in particle size and SiC, B4C powder with 200 µm in particle size. The chosen powders were mixed by using planetary mixing setup at 250 rpm for 4hr.with zinc stearate as an activator material in steel ball milling. After mixing process the powders were compacted by hydraulic

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study the Effect of Fillers and Thermoplastics Content in the Mechanical Properties of Natural Rubber Vulcanized
...Show More Authors

In this research, the mechanical properties of natural rubber blends in different proportions (70:30, 85:15, 100: 0 55:45 and phr) was studied through the use of two types of fillers (carbon black and titanium dioxide Nano) which show through tests conducted on the prepared models that increase fillers content which leads to improve the tensile properties (tensile strength, elastic modulus, elongation, hardness and compressibility). As shown by the results that the presence of polypropylene (PP) in the mix combination works to reduce the degree of intumescent and increase its content in the composition of mixtures which leads to get a great resistance to chemicals (acids, bases and oils).

View Publication Preview PDF
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Effect of Plasma Shot Peening on Mechanical Properties and Fatigue life of AL-Alloys 2024-T3
...Show More Authors

An Investigation of estimated Mechanical Properties of AL-Alloys 2024-T3, which is the most commonly used in industrial applications, been established experimentally. A new novel Plasma Peening techniques had applied for the whole surfaces of the material by CNC-Plasma machine for 48 specimen, and then a new investigation were toke over to figure the amount of change in mechanical properties and estimated fatigue life. It found that improvement was showing a nonlinear behavior according to peening duration time, speed, peening distance, peening number, and amount of effected power on the depth of the material thickness. The major improvement was at medium speed long duration time normal peening distance. Which shows up t

... Show More
View Publication Preview PDF