Background: Masseter muscle is a jaw closing muscle of the mandible involved in Para functional habits; which include lip and cheek chewing, fingernail biting, and teeth clenching or bruxism which can be classified as awake or sleep bruxism. Patients with sleep bruxism are three to four times more likely to experience jaw pain and limitation of movement than people who do not experience sleep bruxism. The aim of this study is to measure the thickness of the masseter muscle in bruxist subjects and compare it with non-bruxist subjects by using sonography. Materials and Method: Forty Iraqi subjects with age ranged (20-40) divided into two groups according to the presence of bruxism. Clinical examination was made and masseter muscle thickness measured for both groups using sonography. Results: For bruxist subjects the mean thickness of masseter muscle in relaxation and clenching were (11.7 ± 1.4 mm) and (16.4 ± 1.3 mm). For non bruxist subjects were (11.2 ± 0.4 mm) and (13 ±0.3 mm) respectively. There was an extremely high statistical significant difference in masseter muscle thickness under clenching between bruxist and non bruxist subjects ( it was higher in bruxist group). Masseter muscle thickness under relaxation was significantly lower than that under clenching for both groups. Also there was a positive correlation between masseter muscle thickness and muscle function in bruxism situation. Conclusion: Masseter muscle in bruxist subject was thicker when compared to non-bruxist subject. Masseter muscle thickness was found to be positively correlated with increasing muscle function. The findings of this study indicate that the functional capacity of the masseter muscle affected by bruxism and may be considered as one of the factors influencing muscle thickness.
A thermal evaporation technique was used to prepare ZnO thin films. The samples were prepared with good quality onto a glass substrate and using Zn metal. The thickness varied from (100 to 300) ±10 nm. The structure and optical properties of the ZnO thin films were studied. The results of XRD spectra confirm that the thin films grown by this technique have hexagonal wurtzite, and also aproved that ZnO films have a polycrystalline structure. UV-Vis measurement, optical transmittance spectra, showed high transmission about 90% within visible and infrared range. The energy gap is found to be between 3.26 and 3.14e.V for 100 to 300 nm thickness respectivly. Atomic Force Microscope AFM (topographic image ) shows the grain size incre
... Show MoreZinc Oxide transparent thin films (ZnO) with different thickness from (220 to 420)nm
±15nm were prepared by thermal evaporation technique onto glass substrates at 200 with
the deposition rate of (10 2) nm sec
-1
, X-ray diffraction patterns confirm the proper phase
formation of the material. The investigation of (XRD) indicates that the (ZnO) film is
polycrystalline type of Hexagonal and the preferred orientation along (002) plane. The Optical
properties of ZnO were determined through the optical transmission method using ultraviolet-visible spectrophotometer with wavelength (300 – 1100) nm. The optical band gap values of
ZnO thin films were slightly increased from (2.9 - 3.1) eV as the film thickn
Non-additive measures and corresponding integrals originally have been introduced by Choquet in 1953 (1) and independently defined by Sugeno in 1974 (2) in order to extend the classical measure by replacing the additivity property to non-additive property. An important feature of non –additive measures and fuzzy integrals is that they can represent the importance of individual information sources and interactions among them. There are many applications of non-additive measures and fuzzy integrals such as image processing, multi-criteria decision making, information fusion, classification, and pattern recognition. This paper presents a mathematical model for discussing an application of non-additive measures and corresp
... Show MoreIn the present work, We study the structural and optical properties of (ZnO), which are prepared by thermal evaporation technique, where deposit (Zn) on glass substrates at different thicknesses (150,250,350)nm, deposited on glass substrate at R.T. with rate (5 nm sec-1). And then we make oxidation for (Zn) films at temperature (500) and using the air for one hour, and last annealing samples at temperature (400,500) for one hour. The investigation of (XRD) indicates that the (ZnO) films are polycrystalline type of hexagonal with a preferred orientation along (002) to all samples and analysis reveals that the intensity of this orientation increases with the increase of the thickness and annealing temperature.  
... Show MoreThe electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.
In the present work, different thicknesses of CdS film were prepared by chemical bath deposition. Z-Scan technique was used to study the nonlinear refractive index and nonlinear absorption coefficients. Linear optical testing were done such as transmission test, and thickness of films were done by the interference fringes (Michelson interferometer). Z-scan experiment was performed at 650nm using CW diode laser and at 532nm wavelength. The results show the effect of self-focusing and defocusing that corresponds with nonlinear refraction n2. The effect of two-photon absorption was also studied, which correspond to the nonlinear absorption coefficient B.
In this research the Cobalt Oxide (Co3O4) films are prepared by the method of chemical spray pyrolysis deposition at different thicknesses such that (250, 350, 450, and 550) ± 20 nm. The optical measurement shows that the Co3O4 films have a direct energy gap, and they in general increase with the increase of the thickness. The optical constants are investigated and calculated such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-900) nm. The electrical conductivity (σ) and the activation energies (Ea1, Ea2) have been investigated on (Co3O4) thin films as a function of thickness. The films
... Show MoreOf non-Muslim minorities In the Muslim community
The banking system considered as one of the most important intermediate circle between creditor and debtors it is mean the most important funding rings in economic activity, whether finance takes the a consumer or investment form and therefore it is the main base to stimulate economic activity both on the demand side, both consumption and investment and therefore of the main motivating factors for economic growth.
The banking system depends in achieve its goals on the grants and loan recovery, or what is known credit process and according to what the importance referred to the role of the banking system, it is important to ensure the safety and efficiency of the mechanisms of banking device and safety is
... Show MoreIn this work, the optical properties of Cu2S with different thickness
(1400, 2400, 4400) Ǻ have been prepared by chemical spray pyrolys
is method onto clean glass substrate heated at 283 oC ±2. The effect
of thickness on the optical properties of Cu2S has been studied. It
was found that the optical properties of the electronic transitions on
fundamental absorption edge were direct allowed and the value of the
optical energy gap of Cu2S (Eg) for direct transition decreased from
(2.4-2.1) eV with increasing of the thickness from (1400 - 4400)Ǻ
respectively. Also it was found that the absorption coefficient is
increased with increasing of thicknesses. The optical constants such<