Background: Antibacterial action of root canal filling is an important factor for successful root canal treatment, so the aim of the study was to identify and to compare the antimicrobial effect of new sealer (GuttaFlow) to commonly used endodontic sealers (AH Plus, Apexit and EndoFill) against four endodontic microbes. Materials and methods: Twenty patients aged (30-40) years with infected root canals were selected. Four types of microorganisms were isolated from root canals (E faecalis, Staphylococcus aureus, E coli and Candida albicans) and cultured on Mueller Hinton agar Petri-dishes. After identification and isolation of bacterial species, agar diffusion method was used to assess the antibacterial action of four contemporary endodontic sealers used in root canal obturation (AH Plus, Apexit, EndoFill and GuttafFlow). Four wells measuring (5mm depth and 4mm diameter) were created in each Petri dish and sealer was applied into them incubated overnight at 37 C° for bacterial species and 48 hr. at 37 C° for Candida albicans prior to determination of results. Zones of inhibition (no growth of bacteria) were examined around the wells containing sealer & diameters of the zones were measured in mm. The mean of inhibition zones for each group was measured and statistically analyzed among groups using ANOVA and between groups using LSD tests. Results: There was a highly significant difference (P<0.001) among all the tested groups. EndoFill showed the maximum antibacterial action against tested microorganisms. GuttaFlow showed moderate to weak antimicrobial effect, Apexit had weak effect, while AH Plus had no antibacterial action. Conclusion: All the tested materials except AH Plus had antibacterial efficacy against E faecalis, Staphylococcus aureus, E coli and Candida albicans. EndoFill had favorable results among tested sealers and E faecalis was the most resistant bacteria, but none of the materials totally inhibited microbial growth. Thus, endodontic treatment must be performed under aseptic conditions.
This paper deals with the modeling of a preventive maintenance strategy applied to a single-unit system subject to random failures.
According to this policy, the system is subjected to imperfect periodic preventive maintenance restoring it to ‘as good as new’ with probability
p and leaving it at state ‘as bad as old’ with probability q. Imperfect repairs are performed following failures occurring between consecutive
preventive maintenance actions, i.e the times between failures follow a decreasing quasi-renewal process with parameter a. Considering the
average durations of the preventive and corrective maintenance actions a
... Show MoreAbstract
The vegetative filter strips (VFS) are a useful tool used for reducing the movement of sediment and pesticide in therivers. The filter strip’s soil can help in reducing the runoff volume by infiltration. However, the characteristics of VFS (i.e., length) are not recently identified depending on the estimation of VFS modeling performance. The aim of this research is to study these characteristics and determine acorrelation between filter strip length and percent reduction (trapping efficiency) for sediment, water, and pesticide. Two proposed pesticides(one has organic carbon sorption coefficient, Koc, of 147 L/kg which is more moveable than XXXX, and another one
... Show MoreThe Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats. This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrat
... Show MoreIn the recent years the research on the activated carbon preparation from agro-waste and byproducts have been increased due to their potency for agro-waste elimination. This paper presents a literature review on the synthesis of activated carbon from agro-waste using microwave irradiation method for heating. The applicable approach is highlighted, as well as the effects of activation conditions including carbonization temperature, retention period, and impregnation ratio. The review reveals that the agricultural wastes heated using a chemical process and microwave energy can produce activated carbon with a surface area that is significantly higher than that using the conventional heating method.
This paper proposes a new encryption method. It combines two cipher algorithms, i.e., DES and AES, to generate hybrid keys. This combination strengthens the proposed W-method by generating high randomized keys. Two points can represent the reliability of any encryption technique. Firstly, is the key generation; therefore, our approach merges 64 bits of DES with 64 bits of AES to produce 128 bits as a root key for all remaining keys that are 15. This complexity increases the level of the ciphering process. Moreover, it shifts the operation one bit only to the right. Secondly is the nature of the encryption process. It includes two keys and mixes one round of DES with one round of AES to reduce the performance time. The W-method deals with
... Show MoreSecure storage of confidential medical information is critical to healthcare organizations seeking to protect patient's privacy and comply with regulatory requirements. This paper presents a new scheme for secure storage of medical data using Chaskey cryptography and blockchain technology. The system uses Chaskey encryption to ensure integrity and confidentiality of medical data, blockchain technology to provide a scalable and decentralized storage solution. The system also uses Bflow segmentation and vertical segmentation technologies to enhance scalability and manage the stored data. In addition, the system uses smart contracts to enforce access control policies and other security measures. The description of the system detailing and p
... Show MoreAbstract: Recently, there is increasing interest in using mode-division multipelexing (MDM) technique to enhace data rate transmission over multimode fibers. In this technique, each fiber mode is treated as a separate optical carrier to transfer its own data. This paper presents a broadband, compact, and low loss three-mode (de)multiplexer designed for C+L band using subwavelength grating (SWG) technology and built-in silicon-on-insulator SOI platform. SWG offers refractive index engineering for wider operating bandwidth and compact devices compared to conventional ones. The designed (de)multiplex deals with three modes (TE0, TE1, and TE2) and has a loss > -1 dB and crosstalk < −15 dB, and its operation c
... Show MoreRecently Tobit Quantile Regression(TQR) has emerged as an important tool in statistical analysis . in order to improve the parameter estimation in (TQR) we proposed Bayesian hierarchical model with double adaptive elastic net technique and Bayesian hierarchical model with adaptive ridge regression technique .
in double adaptive elastic net technique we assume different penalization parameters for penalization different regression coefficients in both parameters λ1and λ2 , also in adaptive ridge regression technique we assume different penalization parameters for penalization different regression coefficients i
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show More